Generative Training for 3D-Retrieval

Harald Grabner, Torsten Ullrich, Dieter W. Fellner

Abstract

A digital library for non-textual, multimedia documents can be defined by its functionality: markup, indexing, and retrieval. For textual documents, the techniques and algorithms to perform these tasks are well studied. For non-textual documents, these tasks are open research questions: How to markup a position on a digitized statue? What is the index of a building? How to search and query for a CAD model? If no additional, textual information is available, current approaches cluster, sort and classify non-textual documents using machine learning techniques, which have a cold start problem: they either need a manually labeled, sufficiently large training set or the (automatic) clustering / classification result may not respect semantic similarity. We solve this problem using procedural modeling techniques, which can generate arbitrary training sets without the need of any “real” data. The retrieval process itself can be performed with any method. In this article we describe the histogram of inverted distances in detail and compare it to salient local visual features method. Both techniques are evaluated using the Princeton Shape Benchmark (Shilane et al., 2004). Furthermore, we improve the retrieval results by diffusion processes.

References

  1. Ankerst, M., Kastenmü ller, G., Kriegel, H.-P., and Seidl, T. (1999). 3D Shape Histograms for Similarity Search and Classification in Spatial Databases. Advances in Spatial Databases (Lecture Notes in Computer Science), 1651:207-226.
  2. Arthur, D. and Vassilvitskii, S. (2007). k-means++: The Advantages of Careful Seeding. Proceedings of the annual ACM-SIAM symposium on discrete algorithms, 18:1027-1035.
  3. Autodesk (2007). Autodesk Maya API. White Paper, 1:1- 30.
  4. Bishop, C. M. (2007). Pattern Recognition and Machine Learning. Springer.
  5. Bustos, B., Keim, D., Saupe, D., and Schreck, T. (2007). Content-based 3D Object Retrieval. IEEE Computer Graphics and Applications, 27(4):22-27.
  6. Donoser, M. and Bischof, H. (2013). Diffusion Processes for Retrieval Revisited. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 29:1320-1327.
  7. Dutagaci, H., Sankur, B., and Yemez, Y. (2005). Transformbased methods for indexing and retrieval of 3D objects. Proceedings of the International Conference on 3-D Digital Imaging and Modeling, 5:188-195.
  8. Fellner, D. W., Saupe, D., and Krottmaier, H. (2007). 3D Documents. IEEE Computer Graphics and Applications, 27(4):20-21.
  9. Grabner, H., Ullrich, T., and Fellner, D. W. (2014). Contentbased Retrieval of 3D Models using Generative Modeling Techniques. Proceedings of EUROGRAPHICS Workshop on Graphics and Cultural Heritage (Short Papers / Posters), 12:9-12.
  10. Havemann, S. (2005). Generative Mesh Modeling. PhDThesis, Technische Universität Braunschweig, Germany, 1:1-303.
  11. Havemann, S., Ullrich, T., and Fellner, D. W. (2012). The Meaning of Shape and some Techniques to Extract It. Multimedia Information Extraction, 1:81-98.
  12. Johnson, A. and Hebert, M. (1999). Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21:433-449.
  13. Jones, M. C., Marron, J. S., and Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 91:401-407.
  14. Kazhdan, M., Funkhouser, T. A., and Rusinkiewicz, S. (2003). Rotation invariant spherical harmonic representation of 3D shape descriptors. Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 1:156-164.
  15. Kriegel, H.-P., Brecheisen, S., Krö ger, P., Pfeifle, M., and Schubert, M. (2003). Using sets of feature vectors for similarity search on voxelized CAD objects. Proceedings of the ACM International Conference on Management of Data (SIGMOD), 29:587-598.
  16. Krispel, U., Schinko, C., and Ullrich, T. (2014). The Rules Behind - Tutorial on Generative Modeling. Proceedings of Symposium on Geometry Processing / Graduate School, 12:2:1-2:49.
  17. Manning, C. D., Raghavan, P., and Schü tze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
  18. Mü ller, P., Wonka, P., Haegler, S., Andreas, U., and Van Gool, L. (2006). Procedural Modeling of Buildings. Proceedings of 2006 ACM Siggraph, 25(3):614- 623.
  19. Ohbuchi, R., Osada, K., Furuya, T., and Banno, T. (2008). Salient local visual features for shape-based 3D model retrieval. Proceeding of the IEEE International Conference on Shape Modeling and Applications, 8:93- 102.
  20. O zkar, M. and Kotsopoulos, S. (2008). Introduction to shape grammars. International Conference on Computer Graphics and Interactive Techniques ACM SIGGRAPH 2008 (course notes), 36:1-175.
  21. Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The PageRank Citation Ranking: Bringing Order to the Web. online:.
  22. Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. A. (2004). The Princeton Shape Benchmark. Shape Modeling International, 8:1-12.
  23. Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Microsoft Research.
  24. Tangelder, J. W. H. and Veltkamp, R. C. (2008). A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications, 39:441-471.
  25. Ullrich, T. and Fellner, D. W. (2011). Generative Object Definition and Semantic Recognition. Proceedings of the Eurographics Workshop on 3D Object Retrieval, 4:1-8.
  26. Ullrich, T., Schinko, C., and Fellner, D. W. (2010). Procedural Modeling in Theory and Practice. Poster Proceedings of the 18th WSCG International Conference on Computer Graphics, Visualization and Computer Vision, 18:5-8.
  27. Ullrich, T., Schinko, C., Schiffer, T., and Fellner, D. W. (2013). Procedural Descriptions for Analyzing Digitized Artifacts. Applied Geomatics, 5(3):185-192.
  28. Vanegas, C. A., Aliaga, D. G., Wonka, P., M üller, P., Waddell, P., and Watson, B. (2010). Modelling the Appearance and Behaviour of Urban Spaces. Computer Graphics Forum, 29:25-42.
  29. Watson, B. and Wonka, P. (2008). Procedural Methods for Urban Modeling. IEEE Computer Graphics and Applications, 28(3):16-17.
Download


Paper Citation


in Harvard Style

Grabner H., Ullrich T. and W. Fellner D. (2015). Generative Training for 3D-Retrieval . In Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015) ISBN 978-989-758-087-1, pages 97-105. DOI: 10.5220/0005248300970105


in Bibtex Style

@conference{grapp15,
author={Harald Grabner and Torsten Ullrich and Dieter W. Fellner},
title={Generative Training for 3D-Retrieval},
booktitle={Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015)},
year={2015},
pages={97-105},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005248300970105},
isbn={978-989-758-087-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015)
TI - Generative Training for 3D-Retrieval
SN - 978-989-758-087-1
AU - Grabner H.
AU - Ullrich T.
AU - W. Fellner D.
PY - 2015
SP - 97
EP - 105
DO - 10.5220/0005248300970105