Optical Measurement of Temperature in Tissue Culture Surfaces under Infrared Laser Light Excitation at 800nm using a Fluorescent Dye

Claire Lefort, David Moreau, Philippe Lévêque, Rodney O'Connor

Abstract

The use of infrared laser light (IRLL) for biomedical applications has gained momentum the potential applications in humans. The use of IRLL presents some limitations due to the dangerousness of these radiations when exceeding some safety thresholds depending on the target tissue. This position paper describes step by step a well-known technical method usually applied for microfluidics but here applied for the first time to measure the temperature and the heat evolution in a cell culture environment under IRLL excitation at 800 nm. The measurement of temperature is based on the property of Rhodamine B (RhB), a fluorescent dye whose fluorescence intensity decreases linearly with temperature increases, illustrated by preliminary microscopic measurements of temperature in cell culture dishes containing RhB solution under the IRLL excitation from 0 mW to 300 mW.

References

  1. Ali, M. A., Moghaddasi, J., Ahmed, S. A., 1990. Temperature effects in rhodamine b dyes and improvement in cw dye laser performance, Laser Chem., 11, pp. 31-38.
  2. Baffou, G., Rigneault, H., Marguet, D., Jullien, L., 2014. A critique of methods for temperature imaging in single cells, Nature Methods, 11, 9, pp. 899-901.
  3. Chapman, C. F., Liu, Y., Sonek, G. J., Tromberg, B. J., 1995. The use of exogenous fluorescent probes for temperature measurements in single living cell, Photochemistry and photobiology, 62, 3, pp 416-425.
  4. Chen, Y.Y., Wood, A.W., 2009. Application of a temperature-dependent fluorescent dye (Rhodamine B) to the measurement of radiofrequency radiationinduced temperature changes in biological samples, Bioelectromagnetics, 30, 7, pp. 583-590.
  5. Donner, J.S., Thompson, S.A., Kreuzer, M.P., Baffou, G., Quidant, R., 2012. Mapping Intracellular Temperature Using Green Fluorescent Protein, Nano Letters, 12, 4, pp. 2107-2111.
  6. Ferguson, J. and Mau, AWH, 1973. Spontaneous and stimulated emission from dyes. Spectroscopy of the neutral molecules of acridine orange, proflavine, and rhodamine B, Australian Journal of Chemistry 26, 8, pp. 1617 - 1624.
  7. Gui, L., Ren, C.L., 2008. Temperature measurement in microfluidic chips using photobleaching of a fluorescent thin film, Applied Physics Letters, 92, 2.
  8. Hoover, E.E., Squier, J.A., 2013. Advances in multiphoton microscopy technology, Nature Photonics Review, 7, pp. 93-101.
  9. Kohler, S., O'Connor, R.P., Thi Dan Thao Vu, Leveque, P., Arnaud-Cormos, D., 2013. Experimental microdosimetry techniques for biological cells exposed to nanosecond pulsed electric fields using microfluorimetry, IEEE Transactions on Microwave Theory and Techniques, 61, 5.
  10. Kubin, R. F., and Fletcher, A. N., December 1982-February 1983. Fluorescence quantum yields of some rhodamine dyes, Journal of Luminescence, 27, 4, pp. 455-462.
  11. Li, B.-H., Xie, S.-S., Huang, Z., Wilson, B.C., 2009. Advances in photodynamic therapy dosimetry. Progress in Biochemistry and Biophysics, 36, 6, pp. 676-683.
  12. Liljemaln, R., Nyberg, T., von Holst, H., 2013. Heating during neural stimulation, Lasers in Surgery and Medicine, 45, pp. 469-481.
  13. Löw, P., Kim, B., Takama, N., Bergaud,C., 2008. HighSpatial-Resolution Surface-Temperature Mapping Using Fluorescent Thermometry, Small, 4, 7, pp. 908- 914.
  14. Martinez Maestro, L., Rodriguez, E.M., Sanz Rodriguez, F., Iglzsias-de la Cruz, M.C., Juarranz, A., Naccache, R., Vetrone, F., Jaque, D., Capobianco, J.A., Garcia Sole, J., 2010. CdSe Quantum Dots for Two-Photon Fluorescence Thermal Imaging, Nano Letters, 10, 12, pp. 5109-5115.
  15. Okabe, K., Inada, I., Gota, C., Harada, Y., Funatsu, T., Uchiyama, S., 2012. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy, Nature Communication, 3, 705, pp. 1-9.
  16. Reungpatthanaphong, P., Dechsupa, S., Meesungnoen, J., Loetchutinat, C., Mankhetkorn,S., 2003. Rhodamine B as a mitochondrial probe for measurement and monitoring of mitochondrial membrane potential in drug-sensitive and -resistant cells, Journal of Biochemical and Biophysical Methods, 57, 1, pp. 1-16.
  17. Richter, C.-P., and Tan, 2014. Photons and neurons, Heating research, 311, pp. 72-88.
  18. Ross, D., Gaitan, M. and Locascio, L.E., 2001. Temperature measurement inmicrofluidic systems using a temperature-dependent fluorescent dye, Analytical Chemistry, 73, pp. 4117-4123.
  19. Sakakibara, J., and Adrian, R.J., 1999. Whole field measurement of temperature in water using two-color laser induced fluorescence, Exper.Fluids, 26, pp. 7-15.
  20. Shah, J. J., Gaitan, M., Geist, J., 2009. Generalized temperature measurement equations for rhodamine b dye solution and its application to microfluidics, Analytical Chemistry, 81, 19, pp 8260-8263.
  21. Shah, J. J., Sundaresan, S. G., Geist, J., Reyes, D. R., Booth, J. C. Mulpuri, Rao, V., Gaitan,M., 2007. Microwave dielectric heating of fluids in an integrated microfluidic device, Journal of Micromechanics and Microengineering, 17, 11.
  22. Shang, L., Stockmar, F., Azadfar, N., Nienhaus, G.U., 2013. Intracellular Thermometry by Using Fluorescent Gold Nanoclusters, Angewandte Chemie International Edition, 52, 42, pp. 11154-11157.
  23. Vetrone, F., Naccache, R., Zamarron, A., Juarranz de la Fuente, A., Sanz-Rodriguez, F., Marinez, L., Rodriguez, E.M., Jaques, D., Garcia Sole, J., Capobianco, J.A., 2010. Temperature sensing using fluorescence nanothermometers, ACS Nano, 4, 6, pp. 3254-3258.
  24. Welch, A.J., 1984. The thermal response of laser irradiated tissues, IEEE Journal of Quantum Electronics, 20, 12 pp. 1471-1481.
  25. Yang, L., Peng, H.-S., Ding, H., You, F.-T., Hou, L.-L., Teng, F., 2013. Luminescent Ru(bpy)3 2+-doped silica nanoparticles for imaging of intracellular temperature, Microchimica Acta, 181, 7-8, pp. 743-749.
  26. Zohar, O., Ikeda, M., Shinagawa, H., Inoue, H., Nakamura, H., Elbaum, D., Alkon, D.L., Yoshioka, T., 1998. Thermal imaging of receptor-activated heat production in single cells, Biophysical Journal, 74, 1, pp. 82-89.
Download


Paper Citation


in Harvard Style

Lefort C., Moreau D., Lévêque P. and O'Connor R. (2015). Optical Measurement of Temperature in Tissue Culture Surfaces under Infrared Laser Light Excitation at 800nm using a Fluorescent Dye . In Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-092-5, pages 47-52. DOI: 10.5220/0005256300470052


in Bibtex Style

@conference{photoptics15,
author={Claire Lefort and David Moreau and Philippe Lévêque and Rodney O'Connor},
title={Optical Measurement of Temperature in Tissue Culture Surfaces under Infrared Laser Light Excitation at 800nm using a Fluorescent Dye},
booktitle={Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2015},
pages={47-52},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005256300470052},
isbn={978-989-758-092-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Optical Measurement of Temperature in Tissue Culture Surfaces under Infrared Laser Light Excitation at 800nm using a Fluorescent Dye
SN - 978-989-758-092-5
AU - Lefort C.
AU - Moreau D.
AU - Lévêque P.
AU - O'Connor R.
PY - 2015
SP - 47
EP - 52
DO - 10.5220/0005256300470052