High-Speed and Robust Monocular Tracking

Henning Tjaden, Ulrich Schwanecke, Frédéric Stein, Elmar Schömer

Abstract

In this paper, we present a system for high-speed robust monocular tracking (HSRM-Tracking) of active markers. The proposed algorithm robustly and accurately tracks multiple markers at full framerate of current high-speed cameras. For this, we have developed a novel, nearly co-planar marker pattern that can be identified without initialization or incremental tracking. The pattern also encodes a unique ID to identify different markers. The individual markers are calibrated semi-automatically, thus no time-consuming and error-prone manual measurement is needed. Finally we show that the minimal spatial structure of the marker can be used to robustly avoid pose ambiguities even at large distances to the camera. This allows us to measure the pose of each individual marker with high accuracy in a vast area.

References

  1. Faessler, M., Mueggler, E., Schwabe, K., and Scaramuzza, D. (2014). A monocular pose estimation system based on infrared LEDs. In IEEE International Conference on Robotics and Automation (ICRA).
  2. Fitzgerald, D., Foody, J., Kelly, D., Ward, T., Markham, C., McDonald, J., and Caulfield, B. (2007). Development of a wearable motion capture suit and virtual reality biofeedback system for the instruction and analysis of sports rehabilitation exercises. In EMBS 2007, pages 4870-4874.
  3. Herout, A., Szentandrasi, I., Zacharia, M., Dubska, M., and Kajan, R. (2013). Five shades of grey for fast and reliable camera pose estimation. In IEEE Conference on Computer Vision and Pat. Rec., pages 1384-1390.
  4. Lakemond, R., Fookes, C., and Sridharan, S. (2013). Resection-intersection bundle adjustment revisited. ISRN Machine Vision, 2013:8.
  5. Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathmatics, II(2):164-168.
  6. Lourakis, M. A. and Argyros, A. (2009). SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans. Math. Software, 36(1):1-30.
  7. MacKay, D. J. C. (2002). Information Theory, Inference & Learning Algorithms. Cambridge University Press, New York, NY, USA.
  8. Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11(2):431-441.
  9. Naimark, L. and Foxlin, E. (2005). Encoded led system for optical trackers. In Proceedings of the 4th IEEE/ACM International Symposium on Mixed and Augmented Reality, pages 150-153.
  10. Nister, D. (2004). An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6):756-770.
  11. Olson, E. (2011). AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 3400-3407. IEEE.
  12. Ong, S. K. and Nee, A. (2004). Virtual Reality and Augmented Reality Applications in Manufacturing. Springer Verlag.
  13. Ozuysal, M., Calonder, M., Lepetit, V., and Fua, P. (2010). Fast keypoint recognition using random ferns. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(3):448-461.
  14. Prisacariu, V. and Reid, I. (2012). Pwp3d: Real-time segmentation and tracking of 3d objects. International Journal of Computer Vision, 98(3):335-354.
  15. Schmaltz, C., Rosenhahn, B., Brox, T., and Weickert, J. (2012). Region-based pose tracking with occlusions using 3d models. Machine Vision and Applications, 23(3):557-577.
  16. Schweighofer, G. and Pinz, A. (2006). Robust pose estimation from a planar target. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(12):2024-2030.
  17. Vito, L., Postolache, O., and Rapuano, S. (2014). Measurements and sensors for motion tracking in motor rehabilitation. Instrumentation Measurement Magazine, IEEE, 17(3):30-38.
  18. Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., and Schmalstieg, D. (2008). Pose tracking from natural features on mobile phones. In Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, pages 125-134.
  19. Welch, G. and Foxlin, E. (2002). Motion tracking: No silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl., 22(6):24-38.
  20. Xu, C., Kuipers, B., and Murarka, A. (2009). 3d pose estimation for planes. In ICCV Workshop on 3D Representation for Recognition (3dRR-09).
  21. Yang, H., Wang, F., Xin, J., Zhang, X., and Nishio, Y. (2012). A robust pose estimation method for nearly coplanar points. In Proceedings NCSP 7812., pages 345-348.
  22. Zetu, D., Banerjee, P., and Thompson, D. (2000). Extendedrange hybrid tracker and applications to motion and camera tracking in manufacturing systems. IEEE Transactions on Robotics and Aut., 16(3):281-293.
Download


Paper Citation


in Harvard Style

Tjaden H., Schwanecke U., Stein F. and Schömer E. (2015). High-Speed and Robust Monocular Tracking . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-091-8, pages 462-471. DOI: 10.5220/0005267104620471


in Bibtex Style

@conference{visapp15,
author={Henning Tjaden and Ulrich Schwanecke and Frédéric Stein and Elmar Schömer},
title={High-Speed and Robust Monocular Tracking},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={462-471},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005267104620471},
isbn={978-989-758-091-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)
TI - High-Speed and Robust Monocular Tracking
SN - 978-989-758-091-8
AU - Tjaden H.
AU - Schwanecke U.
AU - Stein F.
AU - Schömer E.
PY - 2015
SP - 462
EP - 471
DO - 10.5220/0005267104620471