Direct and Inverse Models of Human Arm Dynamics

André Ventura, Inés Tejado, Duarte Valério, Jorge Martins


This paper uses experimental data to model the human arm at the elbow joint. Direct models have been published before; this papers addresses inverse models (i.e. relating the force at the hand with the arm angle). Models used were integer, fractional commensurable and fractional non-commensurable order transfer functions, as well as neural networks (used as a term of comparison). Results show the superiority of fractional models, simpler, more exact, and with less parameter uncertainty.


  1. Adewusi, S., Rakheja, S., and Marcotte, P. (2012). Biomechanical models of the human hand-arm to simulate distributed biodynamic responses for different postures. International Journal of Industrial Ergonomics, 42(2):249-260.
  2. Djordjevic, V. D., Jaric, J., Fabry, B., Fredberg, J. J., and Stamenovic, D. (2003). Fractional derivatives embody essential features of cell rheological behavior. Annals of Biomedical Engineering, 31:692-699.
  3. Fu, M. J. and Cavusoglu, M. C. (2012). Human-arm-andhand-dynamic model with variability analyses for a stylus-based haptic interface. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, PP(99):1-12.
  4. Haykin, S. (1999). Neural Networks-A Comprehensive Foundation. Prentice Hall International, Inc, New Jersey, U.S.A., 2nd edition.
  5. Jang, J.-S. R., Sun, C.-T., and Mizutani, E. (1997). Neurofuzzy and soft computing. Prentice-Hall, Upper Saddle River. chapters 8 to 11.
  6. Magin, R. L. (2004). Fractional Calculus in Bioengineering. Begell House.
  7. Mainardi, F. (2010). Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models. Imperial College Press, London.
  8. Malti, R., Victor, S., and Oustaloup, A. (2008). Advances in system identification using fractional models. ASME Journal of Computational and Nonlinear Dynamics, 3:021401-021401.
  9. Mandic, D. and Chambers, J. (2001). Recurrent Neural Networks for Prediction-learning algorithms, architectures and stability. John Wiley & Sons, LTD, Chichester, England.
  10. Marquardt, D. (1963). An algorithm for least squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11:431-441.
  11. Miller, K. S. and Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. John Wiley and Sons, New York.
  12. Mobasser, F. and Hashtrudi-Zaad, K. (2006). A method for online estimation of human arm dynamics. In Proceedings of th 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS'06), pages 2412-2416.
  13. Nagarsheth, H., Savsani, P., and Patel, M. (2008). Modeling and dynamics of human arm. In Proceedings of the 2008 IEEE International Conference on Automation Science and Engineering (CASE'08), pages 924-928.
  14. Nørgaard, M., Ravn, O., Poulsen, N. K., and Hansen, L. K. (2003). Neural networks for modelling and control of dynamic systems: a practitioner's handbook. Springer-Verlag, London.
  15. Park, S., Lim, H., Kim, B.-S., and Song, J.-B. (2006). Development of safe mechanism for surgical robots using equilibrium point control method. In Larsen, R., Nielsen, M., and Sporring, J., editors, MICCAI 2006, pages 570-577. Springer Berlin / Heidelberg.
  16. Podlubny, I. (1999). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press, San Diego.
  17. Samko, S. G., Kilbas, A. A., and Marichev, O. I. (1993). Fractional integrals and derivatives. Gordon and Breach, Yverdon.
  18. Sommacal, L., Melchior, P., Cabelguen, J.-M., Oustaloup, A., and Ijspeert, A. J. (2007a). Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, chapter Fractional Multimodels of the Gastrocnemius Muscle for Tetanus Pattern, pages 271-285. Springer.
  19. Sommacal, L., Melchior, P., Dossat, A., Petit, J., Cabelguen, J.-M., Oustaloup, A., and Ijspeert, A. J. (2007b). Improvement of the muscle fractional multimodel for low-rate stimulation. Biomedical Signal Processing and Control, 2:226-233.
  20. Sommacal, L., Melchior, P., Oustaloup, A., Cabelguen, J.- M., and Ijspeert, A. J. (2008). Fractional multi-models of the frog gastrocnemius muscle. Journal of Vibration and Control, 14(9-10):1415-1430.
  21. Taïx, M., Tran, M. T., ares, P. S., and Guigon, E. (2013). Generating human-like reaching movements with a humanoid robot: A computational approach. Journal of Computational Science, 4(4):269-284.
  22. Tejado, I., Valério, D., Pires, P., and Martins, J. (2013). Fractional order human arm dynamics with variability analyses. Mechatronics, 23:805-812.
  23. Valério, D., Ortigueira, M. D., and Sá da Costa, J. (2008). Identifying a transfer function from a frequency response. ASME Journal of Computational and Nonlinear Dynamics, 3(2):021207-021207.
  24. Valério, D. and Sá da Costa, J. (2011). An introduction to single-input, single-output Fractional Control. IET Control Theory & Applications, 5(8):1033-1057.
  25. Valério, D. and Sá da Costa, J. (2013). An Introduction to Fractional Control. IET.
  26. Venture, G., Yamane, K., and Nakamura, Y. (2006). Identification of human musculo-tendon subject specific dynamics using musculo-skeletal computations and non linear least square. In BioRob'06, pages 211-216.

Paper Citation

in Harvard Style

Ventura A., Tejado I., Valério D. and Martins J. (2015). Direct and Inverse Models of Human Arm Dynamics . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015) ISBN 978-989-758-071-0, pages 156-161. DOI: 10.5220/0005276701560161

in Bibtex Style

author={André Ventura and Inés Tejado and Duarte Valério and Jorge Martins},
title={Direct and Inverse Models of Human Arm Dynamics},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015)},

in EndNote Style

JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015)
TI - Direct and Inverse Models of Human Arm Dynamics
SN - 978-989-758-071-0
AU - Ventura A.
AU - Tejado I.
AU - Valério D.
AU - Martins J.
PY - 2015
SP - 156
EP - 161
DO - 10.5220/0005276701560161