Ontology Selection for Semantic Similarity Assessment

Montserrat Batet, David Sanchez

Abstract

The assessment of the semantic similarity between concepts is a key tool to improve the understanding of text. The structured knowledge that ontologies provide has been extensively used to estimate similarities with encouraging results. However, in many domains, several ontologies modelling the same concepts in different ways are available. In such scenarios, the most suitable ontology for similarity calculation should be selected. In this paper we tackle this task by proposing an unsupervised method to select the ontology that seems to enable the most accurate similarity assessments. By studying the ontology features that most influence the similarity accuracy, we propose a score that captures them in a mathematically coherent way. Then, the most suitable ontology can be selected as that with the highest score. We also report the results of the proposed method for several well-known ontologies and a widely-used semantic similarity benchmark.

References

  1. Al-Mubaid, H. & Nguyen, H. A. 2009. Measuring Semantic Similarity between Biomedical Concepts within Multiple Ontologies. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 39(4), pp 389-398.
  2. Batet, M., Erola, A., Sánchez, D. & Castellà-Roca, J. 2013. Utility preserving query log anonymization via semantic microaggregation. Information Sciences, 242(1), pp 49-63.
  3. Batet, M., Gibert, K. & Valls, A. Semantic clustering based on ontologies: an application to the study of visitors in a natural reserve. In: Filipe, J. & Fred, A. L. N., eds. 3th International Conference on Agents and Artificial Intelligence (ICAART'11), 2011a Rome, Italy. SciTePress, 283-289.
  4. Batet, M. & Sánchez, D. 2014. A review on semantic similarity. Encyclopedia of Information Science and Technology, Third Edition. IGI Global.
  5. Batet, M., Sánchez, D. & Valls, A. 2011b. An ontologybased measure to compute semantic similarity in biomedicine. Journal of Biomedical Informatics, 44(1), pp 118-125.
  6. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R. S., Peng, Y., Reddivari, P., Doshi, V. & Sachs, J. Swoogle: A Search and Metadata Engine for the Semantic Web. In: Grossman, D. A., Gravano, L., Zhai, C., Herzog, O. & Evans, D. A., eds. thirteenth ACM international conference on Information and knowledge management, CIKM 2004, 2004 Washington, D.C., USA. ACM Press, 652-659.
  7. Jiang, J. J. & Conrath, D. W. Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy. International Conference on Research in Computational Linguistics, ROCLING X, Sep 1997 Taipei, Taiwan. 19-33.
  8. Li, Y., Bandar, Z. & McLean, D. 2003. An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources. IEEE Transactions on Knowledge and Data Engineering, 15(4), pp 871-882.
  9. Martínez, S., Valls, A. & Sánchez, D. 2012. Semanticallygrounded construction of centroids for datasets with textual attributes. Knowledge-Based Systems, 35(1), pp 160-172.
  10. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient Estimation of Word Representations in Vector Space. International Conference on Learning Representations, 2013. 1-12.
  11. Nelson, S. J., Johnston, D. & Humphreys, B. L. 2001. Relationships in Medical Subject Headings. Relationships in the Organization of Knowledge. K.A. Publishers.
  12. Pedersen, T., Pakhomov, S., Patwardhan, S. & Chute, C. 2007. Measures of semantic similarity and relatedness in the biomedical domain. Journal of Biomedical Informatics, 40(3), pp 288-299.
  13. Petrakis, E. G. M., Varelas, G., Hliaoutakis, A. & Raftopoulou, P. 2006. X-Similarity:Computing Semantic Similarity between Concepts from Different Ontologies. Journal of Digital Information Management, 4(1), pp 233-237.
  14. Pirró, G. 2009. A semantic similarity metric combining features and intrinsic information content. Data & Knowledge Engineering, 68(11), pp 1289-1308.
  15. Resnik, P. Using Information Content to Evalutate Semantic Similarity in a Taxonomy. In: Mellish, C. S., ed. 14th International Joint Conference on Artificial Intelligence, IJCAI 1995, 1995 Montreal, Quebec, Canada. Morgan Kaufmann Publishers Inc., 448-453.
  16. Rodríguez, M. A. & Egenhofer, M. J. 2003. Determining semantic similarity among entity classes from different ontologies. IEEE Transactions on Knowledge and Data Engineering, 15(2), pp 442-456.
  17. Sánchez, D., Batet, M., Isern, D. & Valls, A. 2012a. Ontology-based semantic similarity: A new featurebased approach. Expert Systems with Applications, 39(9), pp 7718-7728.
  18. Sánchez, D., Solé-Ribalta, A., Batet, M. & Serratosa, F. 2012b. Enabling semantic similarity estimation across multiple ontologies: An evaluation in the biomedical domain. Journal of Biomedical Informatics, 45(1), pp 141-155.
  19. Saruladha, K., Aghila, G. & Bhuvaneswary, A. 2010. Computation of Semantic Similarity among Cross Ontological Concepts for Biomedical Domain. Journal of Computing, 2(8), pp 111-118.
  20. Spackman, K. A. 2004. SNOMED CT milestones: endorsements are added to already-impressive standards credentials. Healthcare Informatics, 21(9), pp 54-56.
  21. Wu, Z. & Palmer, M. Verb semantics and lexical selection. In: Pustejovsky, J., ed. 32nd annual Meeting of the Association for Computational Linguistics, 1994 Las Cruces, New Mexico. Association for Computational Linguistics, 133 -138.
Download


Paper Citation


in Harvard Style

Batet M. and Sanchez D. (2015). Ontology Selection for Semantic Similarity Assessment . In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-074-1, pages 569-576. DOI: 10.5220/0005284205690576


in Bibtex Style

@conference{icaart15,
author={Montserrat Batet and David Sanchez},
title={Ontology Selection for Semantic Similarity Assessment},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2015},
pages={569-576},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005284205690576},
isbn={978-989-758-074-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Ontology Selection for Semantic Similarity Assessment
SN - 978-989-758-074-1
AU - Batet M.
AU - Sanchez D.
PY - 2015
SP - 569
EP - 576
DO - 10.5220/0005284205690576