Information Model for Radiology Performance Indicators based on DICOM

Milton Santos, Luis Bastião, Alexandra Queirós, Augusto Silva, Nelson Fernando Pacheco da Rocha


The paper presents the information model of the DICOM - Radiology Performance Indicator (DICOMRPI). This model can be used to aggregate information related to the characterization of medical imaging health care services, namely information incorporated in the studies according to the format of the Digital Imaging and Communication in Medicine (DICOM). The model comprises several components including the ones required to define the context of medical imaging health care services (e.g. the entities involved) and the context of use of the indicator (e.g. Quality Dimensions). For the validation of the proposed information model 51,277 Digital Radiography (DX) studies performed on 27,559 patients from a single health care facility were considered. The results of this validation within the scope of DX modality make possible to anticipate the DICOM-RPI relevance in other imaging modalities and its contribution for comprehensive analysis of medical imaging health care services.


  1. Abujudeh, H. H., Kaewlai, R., Asfaw, B. A., Thrall, J. H., 2010. Quality Initiatives: Key Performance Indicators for Measuring and Improving Radiology Department Performance1. Radiographics, 30, 571-580.
  2. Associates, P. G., 2010. International Quality Indicator Project, viewed 2014-03-03, «».
  3. Booch, G., Jacobson, I., Rumbaugh, J., 2001. The Unified Modelling Language User Guide, Addison-Wesley.
  4. European Comission, 2013. ECHI - List of Indicators, viewed 2014-03-03, « indicators/echi/list/index_en.htm».
  5. Costa, C., Ferreira, C., Bastião, L., Ribeiro, L., Silva, A., Oliveira, J., 2011. Dicoogle - an Open Source Peer-toPeer PACS. Journal of Digital Imaging, 24, 848-856.
  6. Costa, C., Freitas, F., Pereira, M., Silva, A. Oliveira, J., 2009. Indexing and Retrieving DICOM Data in Disperse and Unstructured Archives. International Journal of Computer Assisted Radiology and Surgery, 4, 71-77.
  7. Donabedian, A., 1988. The Quality of Care: How Can it be Assessed? JAMA, 260, 1743-1748.
  8. Kelley, E., Hurst, J., 2006. Health Care Quality Indicators Project: Conceptual Framework Paper. In: Dictorate for Employment, L. A. S. A. G. O. H. (ed.). Organisation for Economic Co-operation and Development. «».
  9. Hillman, B. J., Amis JR, E. S., Neiman, H. L., 2004. The Future Quality and Safety of Medical Imaging: Proceedings of the Third Annual ACR FORUM. Journal of the American College of Radiology, 1, 33- 39.
  10. Johnson, C. D., Krecke, K. N., Miranda, R., Roberts, C. C., Denham, C., 2009. Developing a Radiology Quality and Safety Program: A Primer1. Radiographics, 29, 951-959.
  11. Joint Commission International. 2014. Pathway to Certification. « e/get-certified/».
  12. Kallaman, H.-E., Halsius, E., Olsson, M., Stenstrom, M., 2009. DICOM Metadata Repository for Technical Information in Digital Medical Images. Acta Oncologica, 48, 285-288.
  13. Kings Fund, 2014. Measurement and Performance. «».
  14. Kramers, P., 2003. The ECHI Project: Health Indicators for the European Community. The European Journal of Public Health, 13, 101-106.
  15. Kruskal, J. B., Anderson, S., Yam, C. S., Sosna, J., 2009. Strategies for Establishing a Comprehensive Quality and Performance Improvement Program in a Radiology Department1. Radiographics, 29, 315-329.
  16. Lau, L., 2007. Leadership and Management in Quality Radiology. Biomed Imaging Interv Journal, 3, 21.
  17. Lohr, K. N., Schroeders, S. A., 1990. A Strategy for Quality Assurance in Medicare. New England Journal of Medicine, 322, 707-712.
  18. Ondategui-Parra, S., Bhagwat, J. G., Zou, K. H., Gogate, A., Intriere, L. A., Kelly, P., Seltzer, S., Ros, P., 2004. Practice Management Performance Indicators in Academic Radiology Departments. Radiology, 233, 716-722.
  19. Ondategui-Parra, S., Bhagwat, J. G., Zou, K. H., Nathanason, E., Gill, I., Ros, P., 2005. Use of Productivity and Financial Indicators for Monitoring Performance in Academic Radiology Departments: U.S. Nationwide Survey. Radiology, 236, 214-219.
  20. Ondategui-Parra, S., Erturk, S. M., Ros, P. R., 2006. Survey of the Use of Quality Indicators in Academic Radiology Departments. Am. J. Roentgenol., 187, W451-455.
  21. Pender, T., 2004. UML, A Biblia, Rio de Janeiro, Elsevier.
  22. Piligrimiene, Z., Buciuniené, I., 2008. Different Perspectives os Health Care Quality: Is the Consensus Possible? Economics of Engineering Decisions, 104- 110.
  23. Pisco, L. 2007. Perspectivas Sobre a Qualidade na Saúde. « 12/Perspectivas%20 qualidade%20saude.pdf».
  24. Rubin, D., 2011. Informatics in Radiology: Measuring and Improving Quality in Radiology: Meeting the Challenge with Informatics. Radiographics, 31, 1511- 1527.
  25. Santos, M., Couto, P., Silva, A., Rocha, N., DICOM metadata-mining in PACS for Computed Radiography X-Ray Exposure Analysis. A Mammography Multisite Study. European Congress of Radiology, 2014 Vienna, Austria.
  26. Santos, M., De Francesco, S., Bastião, L., Silva, A., Costa, C., Rocha, N., Multi vendor DICOM metadata access a multi site hospital approach using Dicoogle. Information Systems and Technologies (CISTI), 2013 8th Iberian Conference on, 19-22 June 2013 2013. 1-7.
  27. Santos, M., Bastião, L., Costa, C., Silva, A., Rocha, N., 2011. DICOM and Clinical Data Mining in a Small Hospital PACS: A Pilot Study. In: Cruz-Cunha, M., Varajão, J., Powell, P., Martinho, R. (eds.) ENTERprise Information Systems. Springer Berlin Heidelberg.
  28. Stewart, B. K., Kanal, K. M., Perdue, J. R., Mann, F. A., 2007. Computed Radiography Dose Data Mining and Surveillance as an Ongoing Quality Assurance Improvement Process. Am. J. Roentgenol., 189, 7-11.
  29. Vano, E., Fernandez, J. M., Ten, J. I., Guibelalde, E., Gonzalez, L., Pedrosa, C., 2002. Real-Time Measurement and Audit of Radiation Dose to Patients Undergoing Computed Radiography. Radiology, 225, 283-288.
  30. Vano E., Fernandez Soto J.M., 2007, Patient dose management in digital radiography, Biomed Imaging Interv J; 3(2):e26.
  31. Vano, E., Padovani, R., Bernardi, G., Ten, J. I., Peterzol, A., Dowling, A., Bosmans, H., Kottou, S., Olivari, Z., Faulkner, K., Balter, S., 2005. On the Use of DICOM Cine Header Information for Optimisation: Results from the 2002 European DIMOND Cardiology Survey. Radiat Prot Dosimetry, 117, 162-165.
  32. Vano, E., Ten, J. I., Fernandez, J. M., Prieto, C., Ordiales, J. M., Martinez, D., 2008. Quality Control and Patient Dosimetry in Digital Radiology. On Line System: New Features and Transportability. Radiation Protection Dosimetry, 129, 144-146.
  33. WHO, World Health Organization Centre for Health Development, 2004. A Glossary of Terms for Community Health Care and Services for Older Persons, Ageing and Health Technical Report. Geneva: World Health Organization.
  34. WHO, World Health Organization, 2007. PATH: Performance Assessment Tool for Quality Improvement in Hospitals. In: Systems, D. O. C. H. (ed.). Spain: World Health Organization.

Paper Citation

in Harvard Style

Santos M., Bastião L., Queirós A., Silva A. and Pacheco da Rocha N. (2015). Information Model for Radiology Performance Indicators based on DICOM . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015) ISBN 978-989-758-068-0, pages 182-190. DOI: 10.5220/0005286201820190

in Bibtex Style

author={Milton Santos and Luis Bastião and Alexandra Queirós and Augusto Silva and Nelson Fernando Pacheco da Rocha},
title={Information Model for Radiology Performance Indicators based on DICOM},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015)},

in EndNote Style

JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015)
TI - Information Model for Radiology Performance Indicators based on DICOM
SN - 978-989-758-068-0
AU - Santos M.
AU - Bastião L.
AU - Queirós A.
AU - Silva A.
AU - Pacheco da Rocha N.
PY - 2015
SP - 182
EP - 190
DO - 10.5220/0005286201820190