A Particle-based Dissolution Model using Chemical Collision Energy

Min Jiang, Richard Southern, Jian Jun Zhang

Abstract

We propose a new energy-based method for real-time dissolution simulation. A unified particle representation is used for both fluid solvent and solid solute. We derive a novel dissolution model from the collision theory in chemical reactions: physical laws govern the local excitation of solid particles based on the relative motion of the fluid and solid. When the local excitation energy exceeds a user specified threshold (activation energy), the particle will be dislodged from the solid. Unlike previous methods, our model ensures that the dissolution result is independent of solute sampling resolution. We also establish a mathematical relationship between the activation energy, the inter-facial surface area, and the total dissolution time — allowing for accurate artistic control over the global dissolution rate while maintaining the physical plausibility of the simulation. We demonstrate applications of our method using a number of practical examples, including antacid pills dissolving in water and hydraulic erosion of non-homogeneous terrains. Our method is straightforward to incorporate with existing particle-based fluid simulations.

References

  1. Akinci, N., Akinci, G., and Teschner, M. (2013). Versatile surface tension and adhesion for sph fluids. ACM Trans. Graph., 32(6):182:1-182:8.
  2. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., and Teschner, M. (2012). Versatile rigid-fluid coupling for incompressible sph. ACM Trans. Graph., 31(4):62:1- 62:8.
  3. Amada, T. (2006). Real-time particle-based fluid simulation with rigid body interaction. In Dickheiser, M., editor, Game Programming Gems 6, pages 189-205. Charles River Media.
  4. Arash, O. E., Gnevaux, O., Habibi, A., and michel Dischler, J. (2003). Simulating fluid-solid interaction. In in Graphics Interface, pages 31-38.
  5. Batty, C., Bertails, F., and Bridson, R. (2007). A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph., 26(3).
  6. Becker, M., Tessendorf, H., and Teschner, M. (2009). Direct forcing for lagrangian rigid-fluid coupling. IEEE Transactions on Visualization and Computer Graphics, 15(3):493-503.
  7. Benes?, B., Te? s?ínskÉ , V., Hornys?, J., and Bhatia, S. (2006). Hydraulic erosion. Computer Animation and Virtual Worlds, 17(2):99 - 108.
  8. Busaryev, O., Dey, T. K., Wang, H., and Ren, Z. (2012). Animating bubble interactions in a liquid foam. ACM Trans. Graph., 31(4):63:1-63:8.
  9. Carlson, M., Mucha, P. J., and Turk, G. (2004). Rigid fluid: Animating the interplay between rigid bodies and fluid. In ACM Trans. Graph, pages 377-384.
  10. Clark, J. (2004). The Essential Dictionary of Science. New York: Barnes & Noble Book.
  11. Cleary, P. W., Pyo, S. H., Prakash, M., and Koo, B. K. (2007). Bubbling and frothing liquids. ACM Trans. Graph., 26(3).
  12. Featherstone, R. (2007). Rigid Body Dynamics Algorithms. Springer-Verlag New York, Inc., Secaucus, NJ, USA.
  13. Foster, N. and Metaxas, D. (1996). Realistic animation of liquids. Graph. Models Image Process., 58(5):471- 483.
  14. Gingold, R. A. and Monaghan, J. J. (1977). Smoothed particle hydrodynamics-theory and application to nonspherical stars. Monthly Notices of the Royal Astronomical Society, 181:375-389.
  15. Harada, T., Tanaka, M., Koshizuka, S., and Kawaguchi, Y. (2007). Real-time coupling of fluids and rigid bodies. APCOM in conjunction with EPMESC XI, (3-6).
  16. Hoetzlein, R. C. (2010-2014). Fast fixed-radius nearest neighbors: Interactive million-particle fluids.
  17. Hojjatoleslami, S. and Kittler, J. (1995). Region growing: A new approach. IEEE Transactions on Image Processing, 7:1079-1084.
  18. Ihmsen, M., Akinci, N., Akinci, G., and Teschner, M. (2012). Unified spray, foam and air bubbles for particle-based fluids. Vis. Comput., 28(6-8):669-677.
  19. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. (2014). SPH Fluids in Computer Graphics. pages 21-42.
  20. Kim, D., young Song, O., and Ko, H.-S. (2010). A practical simulation of dispersed bubble flow. In ACM SIGGRAPH 2010 papers, SIGGRAPH 7810, pages 70:1- 70:5.
  21. Kris?tof, P., Benes?, B., K? rivánek, J., and S? tava, O. (2009). Hydraulic erosion using smoothed particle hydrodynamics. Computer Graphics Forum, pages 219-228.
  22. Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astron. J., 82:1013-1024.
  23. McNaught, A. D. and Wilkinson, A. (1997). Collision theory. Oxford: Blackwell Scientific Publications.
  24. Müller, M., Charypar, D., and Gross, M. (2003). Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA 7803, pages 154-159.
  25. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R. (2008). Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph., 27(3):46:1-46:9.
  26. Schechter, H. and Bridson, R. (2012). Ghost sph for animating water. ACM Trans. Graph., 31(4):61:1-61:8.
  27. Shin, S.-H., Kam, H. R., and Kim, C.-H. (2010). Hybrid simulation of miscible mixing with viscous fingering. Comput. Graph. Forum, pages 675-683.
  28. Solenthaler, B. and Pajarola, R. (2009). Predictivecorrective incompressible sph. ACM Trans. Graph., 28(3):40:1-40:6.
  29. Solenthaler, B., Schläfli, J., and Pajarola, R. (2007). A unified particle model for fluid-solid interactions: Research articles. Comput. Animat. Virtual Worlds, 18(1):69-82.
  30. Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and Selle, A. (2014). Augmented mpm for phasechange and varied materials. ACM Trans. Graph., 33(4):138:1-138:11.
  31. Trautz, M. (1916). Das gesetz der reaktionsgeschwindigkeit und der gleichgewichte in gasen. besttigung der additivitt von cv-3/2r. neue bestimmung der integrationskonstanten und der molekldurchmesser. Zeitschrift fr anorganische und allgemeine Chemie, 96(1):1-28.
  32. Wojtan, C., Carlson, M., Mucha, P. J., and Turk, G. (2007). Animating corrosion and erosion. In Proceedings of the Third Eurographics conference on Natural Phenomena, NPH'07, pages 15-22, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
Download


Paper Citation


in Harvard Style

Jiang M., Southern R. and Zhang J. (2015). A Particle-based Dissolution Model using Chemical Collision Energy . In Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015) ISBN 978-989-758-087-1, pages 285-293. DOI: 10.5220/0005290302850293


in Bibtex Style

@conference{grapp15,
author={Min Jiang and Richard Southern and Jian Jun Zhang},
title={A Particle-based Dissolution Model using Chemical Collision Energy},
booktitle={Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015)},
year={2015},
pages={285-293},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005290302850293},
isbn={978-989-758-087-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015)
TI - A Particle-based Dissolution Model using Chemical Collision Energy
SN - 978-989-758-087-1
AU - Jiang M.
AU - Southern R.
AU - Zhang J.
PY - 2015
SP - 285
EP - 293
DO - 10.5220/0005290302850293