Saliency Detection based on Depth and Sparse Features

Gangbiao Chen, Chun Yuan

Abstract

In this paper, we modified the region-based Human Visual System (HVS) model by import two features, sparse feature and depth feature. The input image is firstly divided into small regions. Then the contrast, sparse and depth feature of each region are extracted. We calculate the center-surround feature differences for saliency detection. In this step, the center shift method is adopted. In the weighting step, the human visual acuity is adopted. Compared with the existing related algorithms, experimental results on a large public database show that the modified method works better and can obtain a more accurate result.

References

  1. Cheng M. M., Zhang G. X., Mitra N. J., et al. Global contrast based salient region detection[C]//Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011: 409-416.
  2. Fang Y., Lin W., Chen Z., et al. A saliency detection model based on sparse features and visual acuity[C]//Circuits and Systems (ISCAS), 2013 IEEE International Symposium on. IEEE, 2013: 2888-2891.
  3. Xiaoyi F. Regions of interest detection with edge and depth information[C]//Industrial Electronics and Applications, 2009. ICIEA 2009. 4th IEEE Conference on. IEEE, 2009: 3028-3031.
  4. Yang W., Tang Y. Y., Fang B., et al. Visual saliency detection with center shift [J]. Neurocomputing, 2013, 103: 63-74.
  5. R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, page1597-1604, 2009.
  6. Walther D., Koch C. Modeling attention to salient protoobjects[J]. Neural Networks, 2006, 19(9): 1395-1407.
  7. Goferman S., Zelnik-Manor L., Tal A. Context-aware saliency detection [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012, 34(10): 1915-1926.
  8. Bruce N. D. B., Tsotsos J K. Saliency, attention, and visual search: An information theoretic approach [J]. Journal of vision, 2009, 9(3): 5.
  9. Xue Y., Liu Z., Shi R. Saliency detection using multiple region-based features [J]. Optical Engineering, 2011, 50(5): 057008-057008-9.
  10. Liu T., Yuan Z, Sun J., et al. Learning to detect a salient object [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2011, 33(2): 353-367.
  11. Rahtu E., Kannala J., Salo M., et al. Segmenting salient objects from images and videos [M]//Computer Vision-ECCV 2010. Springer Berlin Heidelberg, 2010: 366-379.
  12. Li H, Xu L, Liu G. Two-layer average-to-peak ratio based saliency detection[J]. Signal Processing: Image Communication, 2013, 28(1): 55-68.
  13. Ge S. S, He H, Zhang Z. Bottom-up saliency detection for attention determination[J]. Machine vision and applications, 2013, 24(1): 103-116.
  14. Chen Z, Yuan J, Tan Y P. Hybrid saliency detection for images[J]. Signal Processing Letters, IEEE, 2013, 20(1): 95-98.
  15. Ren Z., Gao S., Chia L., et al. Regularized Feature Reconstruction for Spatio-temporal Saliency Detection[J]. 2013.
  16. Ke Y., Sukthankar R., Hebert M. Efficient temporal mean shift for activity recognition in video[C]//19th Annual Conference on Neural Information Processing Systems Workshop on Activity Recognition and Discovery, Whistler, Canada. 2005.
  17. Zhang H., Lei J., Fan X., et al. Depth combined saliency detection based on region contrast model[C]//Computer Science & Education (ICCSE), 2012 7th International Conference on. IEEE, 2012: 763-766.
  18. Cong L., Tong R. F., Bao D. Y. Detect saliency to understand a photo[C]//Multimedia Technology (ICMT), 2011 International Conference on. IEEE, 2011: 286-289.
  19. Han J., He S., Qian X., et al. An object-oriented visual saliency detection framework based on sparse coding representations [J]. 2013.
  20. Han B., Zhu H., Ding Y. Bottom-up saliency based on weighted sparse coding residual[C]//Proceedings of the 19th ACM international conference on Multimedia. ACM, 2011: 1117-1120.
  21. Yangs J., Lin T., Jin X. An Image Sparse Representation for Saliency Detection [J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, 11(10): 6143-6150.
  22. Han S., Vasconcelos N. Biologically plausible saliency mechanisms improve feedforward object recognition [J]. Vision research, 2010, 50(22): 2295-2307.
  23. Liu H., Heynderickx I. Visual attention in objective image quality assessment: based on eye-tracking data [J]. Circuits and Systems for Video Technology, IEEE Transactions on, 2011, 21(7): 971-982.
  24. Culibrk D., Mirkovic M., Zlokolica V., et al. Salient motion features for video quality assessment [J]. Image Processing, IEEE Transactions on, 2011, 20(4): 948-958.
  25. Wang Q., Chen F., Xu W. Saliency selection for robust visual tracking[C]//Image Processing (ICIP), 2010 17th IEEE International Conference on. IEEE, 2010: 2785-2788.
  26. Harel J., Koch C, Perona P. Graph-based visual saliency [J]. Advances in neural information processing systems, 2007, 19: 545.
  27. Gao D., Vasconcelos N. Bottom-up saliency is a discriminant process[C]//Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. IEEE, 2007: 1-6.
  28. Hou X., Zhang L. Saliency detection: A spectral residual approach[C]//Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on. IEEE, 2007: 1-8.
  29. Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [J]. Neural Networks, IEEE Transactions on, 1999, 10(3): 626-634.
  30. Achanta R., Estrada F, Wils P, et al. Salient region detection and segmentation[M]//Computer Vision Systems. Springer Berlin Heidelberg, 2008: 66-75.
  31. Achanta R., Susstrunk S. Saliency detection for contentaware image resizing[C]//Image Processing (ICIP), 2009 16th IEEE International Conference on. IEEE, 2009: 1005-1008.
  32. L. Itti, C. Koch and E. mNiebur. A model of saliencybased visual attention for rapid scene analysis. IEEE T-PAMI, 20(11): 1254-1259, 1998.
  33. J. Harel, C. Koch and P. Perona. Garph-based visual saliency. NIPS, 2006.
  34. D. Gao and N. Vasconcelos. Bottom-up saliency is a discriminant process. IEEE ICCV, 2007.
  35. C. Guo, Q. Ma and L. Zhang. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. IEEE CVPR, 2008.
  36. N. Murray, M. Vanrell, X. Otazu, and C.A.Parraga. Saliency estimation using a non-parametric low-level vision model. IEEE CVPR, 2011.
  37. W. Wang, Y. Wang, Q. Huang, and W. Gao. Measuring visual saliency by site entropy rate. IEEE CVPR, 2010.
Download


Paper Citation


in Harvard Style

Chen G. and Yuan C. (2015). Saliency Detection based on Depth and Sparse Features . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 441-446. DOI: 10.5220/0005292604410446


in Bibtex Style

@conference{visapp15,
author={Gangbiao Chen and Chun Yuan},
title={Saliency Detection based on Depth and Sparse Features},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={441-446},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005292604410446},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - Saliency Detection based on Depth and Sparse Features
SN - 978-989-758-089-5
AU - Chen G.
AU - Yuan C.
PY - 2015
SP - 441
EP - 446
DO - 10.5220/0005292604410446