WaPT - Surface Normal Estimation for Improved Template Matching in Visual Tracking

Nagore Barrena, Jairo Roberto Sánchez, Alejandro García-Alonso

Abstract

This paper presents an algorithm which is an improvement of the template matching technique. The main goal of the algorithm is to match 3D points with their corresponding 2D points in the images. In the presented method, each 3D point is enriched with a normal vector that approximates the orientation of the surface where the 3D point is lying. This normal improves the transfer process of patches providing more precise warped patches, because perspective deformation is taken into account. The results obtained with the proposed transfer method confirm that matching is more accurate than traditional approaches.

References

  1. Alahi, A., Ortiz, R., and Vandergheynst, P. (2012). Freak: Fast retina keypoint. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 510-517. IEEE.
  2. Barron, J. L., Fleet, D. J., and Beauchemin, S. S. (1994). Performance of optical flow techniques. 12:43-77.
  3. Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In Computer VisionECCV 2006, pages 404-417. Springer.
  4. Davison, A. J. (2003). Real-time simultaneous localisation and mapping with a single camera. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 1403-1410. IEEE.
  5. Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007). Monoslam: Real-time single camera slam. In Pattern Analysis and Machine Intelligence, IEEE Transactions on, volume 29, pages 1052-1067. IEEE.
  6. Dellaert, F., Seitz, S. M., Thorpe, C. E., and Thrun, S. (2000). Structure from motion without correspondence. In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 2, pages 557-564. IEEE.
  7. Furukawa, Y. and Ponce, J. (2010). Accurate, dense, and robust multiview stereopsis. 32(8):1362-1376.
  8. Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in Computer Vision. Cambridge University Press.
  9. Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small ar workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on, pages 225-234. IEEE.
  10. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. 60:91-110.
  11. Molton, N., Davison, A. J., and Reid, I. (2004). Locally planar patch features for real-time structure from motion. In BMVC, pages 1-10.
  12. Moré, J. J. (1978). The levenberg-marquardt algorithm: implementation and theory. In Numerical analysis, pages 105-116. Springer.
  13. Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer.
  14. Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. (2000). Bundle adjustmenta modern synthesis. In Vision algorithms: theory and practice, pages 298- 372. Springer.
  15. Watman, C., Austin, D., Barnes, N., Overett, G., and Thompson, S. (2004). Fast sum of absolute differences visual landmark detector. In Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference on, volume 5, pages 4827- 4832. IEEE.
Download


Paper Citation


in Harvard Style

Barrena N., Sánchez J. and García-Alonso A. (2015). WaPT - Surface Normal Estimation for Improved Template Matching in Visual Tracking . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-091-8, pages 496-503. DOI: 10.5220/0005295104960503


in Bibtex Style

@conference{visapp15,
author={Nagore Barrena and Jairo Roberto Sánchez and Alejandro García-Alonso},
title={WaPT - Surface Normal Estimation for Improved Template Matching in Visual Tracking},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={496-503},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005295104960503},
isbn={978-989-758-091-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)
TI - WaPT - Surface Normal Estimation for Improved Template Matching in Visual Tracking
SN - 978-989-758-091-8
AU - Barrena N.
AU - Sánchez J.
AU - García-Alonso A.
PY - 2015
SP - 496
EP - 503
DO - 10.5220/0005295104960503