A Rolling Shutter Compliant Method for Localisation and Reconstruction

Gaspard Duchamp, Omar Ait-Aider, Eric Royer, Jean-Marc Lavest

Abstract

Nowadays Rolling shutter CMOS cameras are embedded on a lot of devices. This type of cameras does not have its retina exposed simultaneously but line by line. The resulting distortions affect structure from motion methods developed for global shutter, like CCD cameras. The bundle adjustment method presented in this paper deals with rolling shutter cameras. We use a projection model which considers pose and velocity and need 6 more parameters for one view in comparison to the global shutter model. We propose a simplified model which only considers distortions due to rotational speed. We compare it to the global shutter model and the full rolling shutter one. The model does not need any condition on the inter-frame motion so it can be applied to fully independent views, even with global shutter images equivalent to a null velocity. Results with both synthetic and real images shows that the simplified model can be considered as a good compromise between a correct geometrical modelling of rolling shutter effects and the reduction of the number of extra parameters. Keywords

References

  1. Ait-Aider, O., Andreff, N., Lavest, J. M., and Martinet, P. (2006). Simultaneous object pose and velocity computation using a single view from a rolling shutter camera. In Computer Vision-ECCV 2006, pages 56- 68. Springer.
  2. Ait-Aider, O., Bartoli, A., and Andreff, N. (2007). Kinematics from lines in a single rolling shutter image. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, pages 1-6. IEEE.
  3. Ait-Aider, O. and Berry, F. (2009). Structure and kinematics triangulation with a rolling shutter stereo rig. In Computer Vision, 2009 IEEE 12th International Conference on, pages 1835-1840. IEEE.
  4. Anderson, S. and Barfoot, T. D. (2013). Towards relative continuous-time slam. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages 1033-1040. IEEE.
  5. Baker, S., Bennett, E., Kang, S. B., and Szeliski, R. (2010). Removing rolling shutter wobble. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2392-2399. IEEE.
  6. Bradley, D., Atcheson, B., Ihrke, I., and Heidrich, W. (2009). Synchronization and rolling shutter compensation for consumer video camera arrays. In Computer Vision and Pattern Recognition Workshops, 2009. CVPR Workshops 2009. IEEE Computer Society Conference on, pages 1-8. IEEE.
  7. Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in Computer Vision. Cambridge University Press.
  8. Hedborg, J., Forssén, P.-E., Felsberg, M., and Ringaby, E. (2012). Rolling shutter bundle adjustment. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1434-1441. IEEE.
  9. Hedborg, J., Ringaby, E., Forssén, P.-E., and Felsberg, M. (2011). Structure and motion estimation from rolling shutter video. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages 17-23. IEEE.
  10. Horn, B. K. (1987). Closed-form solution of absolute orientation using unit quaternions. JOSA A, 4(4):629-642.
  11. Li, M., Kim, B. H., and Mourikis, A. I. (2013). Real-time motion tracking on a cellphone using inertial sensing and a rolling-shutter camera. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages 4712-4719. IEEE.
  12. Liang, C.-K., Chang, L.-W., and Chen, H. H. (2008). Analysis and compensation of rolling shutter effect. Image Processing, IEEE Transactions on, 17(8):1323-1330.
  13. Magerand, L., Bartoli, A., Ait-Aider, O., and Pizarro, D. (2012). Global optimization of object pose and motion from a single rolling shutter image with automatic 2d3d matching. In Computer Vision-ECCV 2012, pages 456-469. Springer.
  14. Meilland, M., Drummond, T., and Comport, A. I. (2013). A unified rolling shutter and motion blur model for 3d visual registration. In The IEEE International Conference on Computer Vision (ICCV).
  15. Meingast, M., Geyer, C., and Sastry, S. (2005). Geometric models of rolling-shutter cameras. arXiv preprint cs/0503076.
  16. Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., and Sayd, P. (2009). Generic and real-time structure from motion using local bundle adjustment. Image and Vision Computing, 27(8):1178-1193.
  17. Ringaby, E. and Forssén, P.-E. (2012). Efficient video rectification and stabilisation for cell-phones. International journal of computer vision, 96(3):335-352.
  18. Royer, E., Lhuillier, M., Dhome, M., and Lavest, J.-M. (2007). Monocular vision for mobile robot localization and autonomous navigation. International Journal of Computer Vision, 74(3):237-260.
  19. Saurer, O., Koser, K., Bouguet, J.-Y., and Pollefeys, M. (2013). Rolling shutter stereo. In The IEEE International Conference on Computer Vision (ICCV).
  20. Tsai, R. Y. (1986). An efficient and accurate camera calibration technique for 3d machine vision. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1986.
Download


Paper Citation


in Harvard Style

Duchamp G., Ait-Aider O., Royer E. and Lavest J. (2015). A Rolling Shutter Compliant Method for Localisation and Reconstruction . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-091-8, pages 277-284. DOI: 10.5220/0005295502770284


in Bibtex Style

@conference{visapp15,
author={Gaspard Duchamp and Omar Ait-Aider and Eric Royer and Jean-Marc Lavest},
title={A Rolling Shutter Compliant Method for Localisation and Reconstruction},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={277-284},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005295502770284},
isbn={978-989-758-091-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)
TI - A Rolling Shutter Compliant Method for Localisation and Reconstruction
SN - 978-989-758-091-8
AU - Duchamp G.
AU - Ait-Aider O.
AU - Royer E.
AU - Lavest J.
PY - 2015
SP - 277
EP - 284
DO - 10.5220/0005295502770284