A Recommendation System for Paintings using Bag of Keypoints and Dominant Color Descriptors

Ricardo Ribani, Mauricio Marengoni

Abstract

Determining the visual description for a painting is an interesting task that can be used in different applications, like retrieval, classification and recommendation. A painting can differ from others depending on the time period it was painted, the genre and the art movement the author lived. This paper present an approach for content based image retrieval applied to art paintings using the concept of bag of keypoints and SURF detector. A descriptor for dominant color is also used and weighted for a best visual retrieval.

References

  1. Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data Eng., 17(6):734-749.
  2. Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features (surf). Comput. Vis. Image Underst., 110(3):346-359.
  3. Csurka, G., Dance, C. R., Fan, L., Willamowski, J., and Bray, C. (2004). Visual categorization with bags of keypoints. In In Workshop on Statistical Learning in Computer Vision, ECCV, pages 1-22.
  4. Datta, R., Joshi, D., Li, J., and Wang, J. Z. (2008). Image retrieval: Ideas, influences, and trends of the new age. ACM Comput. Surv., 40(2):5:1-5:60.
  5. Gunsel, B., Sariel, S., and Icoglu, O. (2005). Content-based access to art paintings. In Image Processing, 2005. ICIP 2005. IEEE International Conference on, volume 2, pages II-558-61.
  6. Jain, A. K. and Vailaya, A. (1996). Image retrieval using color and shape. Pattern Recognition, 29:1233-1244.
  7. Krishnan, N., Banu, M., and Callins Christiyana, C. (2007). Content based image retrieval using dominant color identification based on foreground objects. In Conference on Computational Intelligence and Multimedia Applications, 2007. International Conference on, volume 3, pages 190-194.
  8. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vision, 60(2):91- 110.
  9. Marengoni, M. and Stringhini, D. (2011). High level computer vision using opencv. In Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 2011 24th SIBGRAPI Conference on, pages 11-24.
  10. Perronnin, F. (2008). Universal and adapted vocabularies for generic visual categorization. IEEE Trans. Pattern Anal. Mach. Intell., 30(7):1243-1256.
  11. Proenc¸a, G. (2003). Editora Ítica.
  12. Tkalcic, M., Burnik, U., and Kosir, A. (2010). Using affective parameters in a content-based recommender system for images. User Modeling and User-Adapted Interaction, 20(4):279-311.
  13. Valle, E. and Cord, M. (2009). Advanced techniques in cbir: Local descriptors, visual dictionaries and bags of features. In Computer Graphics and Image Processing (SIBGRAPI TUTORIALS), 2009 Tutorials of the XXII Brazilian Symposium on, pages 72-78.
  14. Yelizaveta, M., Tat-Seng, C., and Irina, A. (2005). Analysis and retrieval of paintings using artistic color concepts. In Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on, pages 1246-1249.
  15. Zujovic, J., Gandy, L., Friedman, S., Pardo, B., and Pappas, T. N. (2009). Classifying paintings by artistic genre: An analysis of features and classifiers. In MMSP, pages 1-5. IEEE.
Download


Paper Citation


in Harvard Style

Ribani R. and Marengoni M. (2015). A Recommendation System for Paintings using Bag of Keypoints and Dominant Color Descriptors . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 321-327. DOI: 10.5220/0005297603210327


in Bibtex Style

@conference{visapp15,
author={Ricardo Ribani and Mauricio Marengoni},
title={A Recommendation System for Paintings using Bag of Keypoints and Dominant Color Descriptors},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={321-327},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005297603210327},
isbn={978-989-758-090-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)
TI - A Recommendation System for Paintings using Bag of Keypoints and Dominant Color Descriptors
SN - 978-989-758-090-1
AU - Ribani R.
AU - Marengoni M.
PY - 2015
SP - 321
EP - 327
DO - 10.5220/0005297603210327