Localization of Visual Codes using Fuzzy Inference System

Peter Bodnar, László Nyúl

Abstract

Usage of computer-readable visual codes is common in everyday life. The reading process of visual codes consists of two steps, localization and data decoding. This paper introduces a fast and robust method for localization of visual codes using Fuzzy Inference Systems based on simplistic, attentive features which can be optionally extended with cell histograms. Input image properties, assigned membership functions and efficiency of the system has been evaluated and discussed, showing FIS is a viable alternative for rapid QR code recognition in the image domain. The basic approach can be also used with lookup tables, that speeds up image cell evaluation and makes it ideal for embedded systems.

References

  1. Belussi, L. F. F. and Hirata, N. S. T. (2011). Fast QR code detection in arbitrarily acquired images. In Graphics, Patterns and Images (Sibgrapi), 2011 24th SIBGRAPI Conference on, pages 281-288.
  2. Bodnár, P. and Nyú l, L. G. (2012). Improving barcode detection with combination of simple detectors. In The 8th International Conference on Signal Image Technology (SITIS 2012), pages 300-306.
  3. Bodnár, P. and Nyú l, L. G. (2013). A novel method for barcode localization in image domain. In Image Analysis and Recognition, volume 7950 of Lecture Notes in Computer Science, pages 189-196.
  4. Chu, C.-H., Yang, D.-N., Pan, Y.-L., and Chen, M.-S. (2011). Stabilization and extraction of 2D barcodes for camera phones. Multimedia Systems, 17:113-133.
  5. Dubská, M., Herout, A., and Havel, J. (2013). Real-time precise detection of regular grids and matrix codes. Journal of Real-Time Image Processing, pages 1-8.
  6. Lin, D.-T. and Lin, C.-L. (2013). Automatic location for multi-symbology and multiple 1D and 2D barcodes. Journal of Marine Science and Technology, 21(6):663-668.
  7. Lindeberg, T. (1993). Scale-space theory in computer vision. Springer.
  8. Ohbuchi, E., Hanaizumi, H., and Hock, L. A. (2004). Barcode readers using the camera device in mobile phones. In Cyberworlds, 2004 International Conference on, pages 260-265.
  9. Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover's distance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99-121.
  10. Sö rö s, G. and Flö rkemeier, C. (2013). Blur-resistant joint 1D and 2D barcode localization for smartphones. In Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia, MUM 7813, pages 11:1-11:8, New York, NY, USA. ACM.
  11. Swain, M. J. and Ballard, D. H. (1991). Color indexing. Int. J. Comput. Vision, 7(1):11-32.
Download


Paper Citation


in Harvard Style

Bodnar P. and Nyúl L. (2015). Localization of Visual Codes using Fuzzy Inference System . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 345-352. DOI: 10.5220/0005299103450352


in Bibtex Style

@conference{visapp15,
author={Peter Bodnar and László Nyúl},
title={Localization of Visual Codes using Fuzzy Inference System},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={345-352},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005299103450352},
isbn={978-989-758-090-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)
TI - Localization of Visual Codes using Fuzzy Inference System
SN - 978-989-758-090-1
AU - Bodnar P.
AU - Nyúl L.
PY - 2015
SP - 345
EP - 352
DO - 10.5220/0005299103450352