A Comparison on Supervised Machine Learning Classification Techniques for Semantic Segmentation of Aerial Images of Rain Forest Regions

Luiz Carlos A. M. Cavalcanti, Jose Reginaldo Hughes Carvalho, Eulanda Miranda dos Santos

Abstract

Segmentation is one of the most important operations in Computer Vision. Partition of the image in several domain-independent components is important in several practical machine learning solutions involving visual data. In the specific problem of finding anomalies in aerial images of forest regions, this can be specially important, as a multilevel classification solution can demand that each type of terrain and other components of the image are inspected by different classification algorithms or parameters. This work compares several common classification algorithms and assess their reliability on segmenting aerial images of rain forest regions as a first step into a multi-level classification solution. Finally, we draw conclusions based on the experiments using real images from a publicly available dataset, comparing the results of those classification algorithms for segmenting this kind of images.

References

  1. Bosch, A., Zisserman, A., and Munoz, X. (2007). Image classification using random forests and ferns.
  2. Deng, G. and Cahill, L. (1993). An adaptive gaussian filter for noise reduction and edge detection. In Nuclear Science Symposium and Medical Imaging Conference, 1993., 1993 IEEE Conference Record., pages 1615- 1619 vol.3.
  3. Dubuisson-Jolly, M.-P. and Gupta, A. (2000). Color and texture fusion: application to aerial image segmentation and gis updating. Image and Vision Computing, 18(10):823 - 832.
  4. Freixenet, J., Munoz, X., Raba, D., Marti, J., and Cufi, X. (2002). Yet another survey on image segmentation: Region and boundary information integration. In Heyden, A., Sparr, G., Nielsen, M., and Johansen, P., editors, Computer Vision ECCV 2002, volume 2352 of Lecture Notes in Computer Science, pages 408-422. Springer Berlin Heidelberg.
  5. Ghiasi, M. and Amirfattahi, R. (2013). Fast semantic segmentation of aerial images based on color and texture. In Machine Vision and Image Processing (MVIP), 2013 8th Iranian Conference on, pages 324-327.
  6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The WEKA data mining software: an update. SIGKDD Explor. Newsl., 11(1):10-18.
  7. Heitz, G. and Koller, D. (2008). Learning spatial context: Using stuff to find things. In Computer Vision-ECCV 2008, pages 30-43. Springer.
  8. INPE (2013). Projeto GEOMA http://www.geoma.lncc.br/.
  9. INPE (2014). GEOMA public dataset of aerial images https://github.com/luizcavalcanti/geoma-database.
  10. Li, G. and Wan, Y. (2010). Improved watershed segmentation with optimal scale based on ordered dither halftone and mutual information. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on, volume 9, pages 296-300.
  11. Mikolajczyk, K. and Schmid, C. (2002). An affine invariant interest point detector. In Heyden, A., Sparr, G., Nielsen, M., and Johansen, P., editors, Computer Vision ECCV 2002, volume 2350 of Lecture Notes in Computer Science, pages 128-142. Springer Berlin Heidelberg.
  12. Nixon, M. and Aguado, A. S. (2008). Feature Extraction & Image Processing, Second Edition. Academic Press, 2nd edition.
  13. Otsu, N. (1979). A threshold selection method from graylevel histograms. Systems, Man and Cybernetics, IEEE Transactions on, 9(1):62-66.
  14. Pal, N. R. and Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26(9):1277 - 1294.
  15. Shapiro, L. G. and Stockman, G. (2001). Computer vision: Theory and applications.
  16. T., A., J., M., and M., H. C. . P. (2009). Rotation invariant image description with local binary pattern histogram fourier features. In In: Image Analysis, SCIA 2009 Proceedings, Lecture Notes in Computer Science 5575, 61-70. ISBN 978-3-642-02229-6.
Download


Paper Citation


in Bibtex Style

@conference{visapp15,
author={Luiz Carlos A. M. Cavalcanti and Jose Reginaldo Hughes Carvalho and Eulanda Miranda dos Santos},
title={A Comparison on Supervised Machine Learning Classification Techniques for Semantic Segmentation of Aerial Images of Rain Forest Regions},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={498-504},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005300004980504},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - A Comparison on Supervised Machine Learning Classification Techniques for Semantic Segmentation of Aerial Images of Rain Forest Regions
SN - 978-989-758-089-5
AU - A. M. Cavalcanti L.
AU - Hughes Carvalho J.
AU - Miranda dos Santos E.
PY - 2015
SP - 498
EP - 504
DO - 10.5220/0005300004980504


in Harvard Style

A. M. Cavalcanti L., Hughes Carvalho J. and Miranda dos Santos E. (2015). A Comparison on Supervised Machine Learning Classification Techniques for Semantic Segmentation of Aerial Images of Rain Forest Regions . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 498-504. DOI: 10.5220/0005300004980504