Second Degree of Freedom of Elastic Objects - Adjustable Poisson’s Ratio for Mass Spring Models

Maciej Kot, Hiroshi Nagahashi

Abstract

In this paper, we show how to construct mass spring models for the representation of homogeneous isotropic elastic materials with adjustable Poisson’s ratio. Classical formulation of elasticity on mass spring models leads to the result, that while materials with any value of Young’s modulus can be modeled reliably, only fixed value of Poisson’s ratio is possible. We show how to extend the conventional model to overcome this limitation.

References

  1. Baudet, V., Beuve, M., Jaillet, F., Shariat, B., and Zara, F. (2007). Integrating Tensile Parameters in 3D Mass-Spring System. Technical Report RRLIRIS-2007-004, LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumiére Lyon 2/ Ócole Centrale de Lyon.
  2. Bender, J., Müller, M., Otaduy, M. A., and Teschner, M. (2013). Position-based methods for the simulation of solid objects in computer graphics. In EUROGRAPHICS 2013 State of the Art Reports. Eurographics Association.
  3. Kot, M., Nagahashi, H., and Szymczak, P. (2014). Elastic moduli of simple mass spring models. The Visual Computer.
  4. Ladd, A. J. C. and Kinney, J. H. (1997). Elastic constants of cellular structures. Physica A: Statistical and Theoretical Physics, 240(1-2):349-360.
  5. Lakes, R. S. (1991). Deformation mechanisms in negative Poisson's ratio materials: structural aspects. Journal of Materials Science, 26:2287-2292.
  6. Love, A. E. H. (1906). A treatise on the mathematical theory of elasticity. Cambridge University Press.
  7. Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M., and Ageia, N. (2006). Physically based deformable models in computer graphics. Comput. Graph. Forum, 25(4):809-836.
  8. Ostoja-Starzewski, M. (2002). Lattice models in micromechanics. Applied Mechanics Reviews, 55(1):35-60.
  9. Sahimi, M. (2003). Rigidity and Elastic Properties: The Discrete Approach. Heterogeneous Materials: Linear Transport and Optical Properties. Interdisciplinary Applied Mathematics v 1, (Chapter 8). SpringerVerlag New York.
  10. Van Gelder, A. (1998). Approximate simulation of elastic membranes by triangulated spring meshes. J. Graph. Tools, 3(2):21-42.
  11. Zhao, G.-F., Fang, J., and Zhao, J. (2011). A 3d distinct lattice spring model for elasticity and dynamic failure. International Journal for Numerical and Analytical Methods in Geomechanics, 35(8):859-885.
Download


Paper Citation


in Harvard Style

Kot M. and Nagahashi H. (2015). Second Degree of Freedom of Elastic Objects - Adjustable Poisson’s Ratio for Mass Spring Models . In Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015) ISBN 978-989-758-087-1, pages 138-142. DOI: 10.5220/0005303601380142


in Bibtex Style

@conference{grapp15,
author={Maciej Kot and Hiroshi Nagahashi},
title={Second Degree of Freedom of Elastic Objects - Adjustable Poisson’s Ratio for Mass Spring Models},
booktitle={Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015)},
year={2015},
pages={138-142},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005303601380142},
isbn={978-989-758-087-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015)
TI - Second Degree of Freedom of Elastic Objects - Adjustable Poisson’s Ratio for Mass Spring Models
SN - 978-989-758-087-1
AU - Kot M.
AU - Nagahashi H.
PY - 2015
SP - 138
EP - 142
DO - 10.5220/0005303601380142