CereVA - Visual Analysis of Functional Brain Connectivity

Michael de Ridder, Karsten Klein, Jinman Kim


We present CereVA, a web-based interface for the visual analysis of brain activity data. CereVA combines 2D and 3D visualizations and allows the user to interactively explore and compare brain activity data sets. The web-based interface combines several linked graphical representations of the network data, allowing for tight integration of different visualizations. The data is presented in the anatomical context within a 3D volume rendering, by node-link visualizations of connectivity networks, and by a matrix view of the data. In addition, our approach provides graph-theoretical analysis of the connectivity networks. Our solution supports several analysis tasks, including the comparison of connectivity networks, the analysis of correlation patterns, and the aggregation of networks, e.g. over a population.


  1. Alper, B., Bach, B., Riche, N. H., Isenberg, T., and Fekete, J.-D. (2013). Weighted graph comparison techniques for brain connectivity analysis. In Mackay, W. E., Brewster, S. A., and Bødker, S., editors, CHI, pages 483-492. ACM.
  2. Böttger, J., Schurade, R., Jakobsen, E., Schaefer, A., and Margulies, D. S. (2014). Connexel visualization: a software implementation of glyphs and edge-bundling for dense connectivity data using braingl. Front Neurosci, 8(15).
  3. (2014). Brainspan http://www.brainspan.org/.
  4. Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci., 10(3):186- 198.
  5. Chang, H.-M., Chiang, A.-S., Didimo, W., Lin, C.-Y., Liotta, G., and Montecchiani, F. (2013). On the robustness of the drosophila neural network. In Network Science Workshop (NSW), 2013 IEEE 2nd, pages 168- 171.
  6. D3 (2014). Data Driven Documents. See http://d3js.org/.
  7. Destrieux, C., Fischl, B., Dale, A., and Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1):1 - 15.
  8. Greicius, M. D., Srivastava, G., Reiss, A. L., and Menon, V. (2004). Default-mode network activity distinguishes alzheimer's disease from healthy aging: Evidence from functional mri. Proceedings of the National Academy of Sciences of the United States of America, 101(13):4637-4642.
  9. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., and Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol, 6(7).
  10. HBP (2014). The Human Brain Project. https://www.humanbrainproject.eu/.
  11. Lee, H., Kang, H., Chung, M. K., Kim, B. N., and Lee, D. S. (2012). Persistent brain network homology from the perspective of dendrogram. IEEE Trans Med Imaging, 31(12):2267-2277.
  12. Margulies, D. S., Böttger, J., Watanabe, A., and Gorgolewski, K. J. (2013). Visualizing the human connectome. NeuroImage, 80:445-461.
  13. Nowke, C., Schmidt, M., van Albada, S., Eppler, J., Bakker, R., Diesrnann, M., Hentschel, B., and Kuhlen, T. (2013). Visnest - interactive analysis of neural activity data. In Biological Data Visualization (BioVis), 2013 IEEE Symposium on, pages 65-72.
  14. Onoda, K. and Yamaguchi, S. (2013). Small-worldness and modularity of the resting-state functional brain network decrease with aging. Neurosci. Lett., 556:104- 108.
  15. Smith, S., Vidaurre, D., Beckmann, C., Glasser, M., Jenkinson, M., Miller, K., Nichols, T., Robinson, E., SalimiKhorshidi, G., Woolrich, M., Barch, D., Ugurbil, K., and DC, V. (2013). Functional connectomics from resting-state fmri. Trends in Cognitive Sciences, 17.
  16. Sorger, J., Buhler, K., Schulze, F., Liu, T., and Dickson, B. (2013). neuromap - interactive graph-visualization of the fruit fly's neural circuit. In Biological Data Visualization (BioVis), 2013 IEEE Symposium on, pages 73-80.
  17. van den Heuvel, M. P. and Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fmri functional connectivity. European Neuropsychopharmacology, 20(8):519 - 534.
  18. Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., and Ugurbil, K. (2013). The wuminn human connectome project: An overview. NeuroImage, 80(0):62 - 79. Mapping the Connectome.
  19. Wang, J., Zuo, X., and He, Y. (2010). Graph-based network analysis of resting-state functional mri. Frontiers in Systems Neuroscience, 4(16).
  20. Webcola (2014). WebCoLa. See http://marvl.infotech.monash.edu/webcola/.
  21. WebGL (2013). WebGL. See https://www.khronos.org/webgl/.
  22. XTK (2014). The X Toolkit. See https://github.com/xtk/X#publications.

Paper Citation

in Harvard Style

de Ridder M., Klein K. and Kim J. (2015). CereVA - Visual Analysis of Functional Brain Connectivity . In Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015) ISBN 978-989-758-088-8, pages 131-138. DOI: 10.5220/0005305901310138

in Bibtex Style

author={Michael de Ridder and Karsten Klein and Jinman Kim},
title={CereVA - Visual Analysis of Functional Brain Connectivity},
booktitle={Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015)},

in EndNote Style

JO - Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015)
TI - CereVA - Visual Analysis of Functional Brain Connectivity
SN - 978-989-758-088-8
AU - de Ridder M.
AU - Klein K.
AU - Kim J.
PY - 2015
SP - 131
EP - 138
DO - 10.5220/0005305901310138