A Perceptual Measure of Illumination Estimation Error

Nikola Banić, Sven Lončarić

Abstract

The goal of color constancy is to keep colors invariant to illumination. An important group of color constancy methods are the global illumination estimation methods. Numerous such methods have been proposed and their accuracy is usually described by using statistical descriptors of illumination estimation angular error. In order to demonstrate some of their fallacies and shortages, a very simple learning-based global illumination estimation dummy method is designed for which the values of statistical descriptors of illumination estimation error can be interpreted in contradictory ways. To resolve the paradox, a new performance measures is proposed that focuses on perceptual difference between different illumination estimation errors. The effect of ground-truth illumination distribution of the benchmark datasets on method evaluation is also demonstrated.

References

  1. Banic, N. and Lonc?aric, S. (2013). Using the Random Sprays Retinex Algorithm for Global Illumination Estimation. In Proceedings of The Second Croatian Computer Vision Workshop (CCVW 2013), pages 3-7. University of Zagreb Faculty of Electrical Engineering and Computing.
  2. Banic, N. and Lonc?aric, S. (2014a). Color Rabbit: Guiding the Distance of Local Maximums in Illumination Estimation. In Digital Signal Processing (DSP), 2014 19th International Conference on, pages 345- 350. IEEE.
  3. Banic, N. and Lonc?aric, S. (2014b). Improving the White patch method by subsampling. In Image Processing (ICIP), 2014 21st IEEE International Conference on, pages 605-609. IEEE.
  4. Banic, N. and Lonc?aric, S. (2015). Color Cat: Remembering Colors for Illumination Estimation. Signal Processing Letters, IEEE, 22(6):651-655.
  5. Buchsbaum, G. (1980). A spatial processor model for object colour perception. Journal of The Franklin Institute, 310(1):1-26.
  6. Chakrabarti, A., Hirakawa, K., and Zickler, T. (2012). Color constancy with spatio-spectral statistics. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(8):1509-1519.
  7. Cheng, D., Prasad, D., and Brown, M. S. (2014a). On Illuminant Detection.
  8. Cheng, D., Prasad, D. K., and Brown, M. S. (2014b). Illuminant estimation for color constancy: why spatialdomain methods work and the role of the color distribution. Journal of the Optical Society of America A, 31(5):1049-1058.
  9. Ciurea, F. and Funt, B. (2003). A large image database for color constancy research. In Color and Imaging Conference, volume 2003, pages 160-164. Society for Imaging Science and Technology.
  10. Ebner, M. (2007). Color Constancy. The Wiley-IS&T Series in Imaging Science and Technology. Wiley.
  11. Finlayson, G. D., Hordley, S. D., and Morovic, P. (2005). Colour constancy using the chromagenic constraint. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 1079-1086. IEEE.
  12. Finlayson, G. D., Hordley, S. D., and Tastl, I. (2006). Gamut constrained illuminant estimation. International Journal of Computer Vision, 67(1):93-109.
  13. Finlayson, G. D. and Schaefer, G. (2001). Solving for colour constancy using a constrained dichromatic reflection model. International Journal of Computer Vision, 42(3):127-144.
  14. Finlayson, G. D. and Trezzi, E. (2004). Shades of gray and colour constancy. In Color and Imaging Conference, volume 2004, pages 37-41. Society for Imaging Science and Technology.
  15. Fredembach, C. and Finlayson, G. (2008). Bright chromagenic algorithm for illuminant estimation. Journal of Imaging Science and Technology, 52(4):40906-1.
  16. Gehler, P. V., Rother, C., Blake, A., Minka, T., and Sharp, T. (2008). Bayesian color constancy revisited. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8. IEEE.
  17. Gijsenij, A. and Gevers, T. (2007). Color Constancy using Natural Image Statistics. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8.
  18. Gijsenij, A., Gevers, T., and Lucassen, M. P. (2009). Perceptual analysis of distance measures for color constancy algorithms. JOSA A, 26(10):2243-2256.
  19. Gijsenij, A., Gevers, T., and Van De Weijer, J. (2011). Computational color constancy: Survey and experiments. Image Processing, IEEE Transactions on, 20(9):2475-2489.
  20. Gijsenij, A., Gevers, T., and Van De Weijer, J. (2012). Improving color constancy by photometric edge weighting. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(5):918-929.
  21. Hordley, S. D. and Finlayson, G. D. (2004). Re-evaluating colour constancy algorithms. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, volume 1, pages 76-79. IEEE.
  22. Joze, H. R. V. and Drew, M. S. (2012). Exemplar-Based Colour Constancy. In British Machine Vision Conference, pages 1-12.
  23. Judd, D. B., MacAdam, D. L., Wyszecki, G., Budde, H., Condit, H., Henderson, S., and Simonds, J. (1964). Spectral distribution of typical daylight as a function of correlated color temperature. JOSA, 54(8):1031- 1040.
  24. L. Shi, B. F. (2014). Re-processed Version of the Gehler Color Constancy Dataset of 568 Images.
  25. Land, E. H. (1977). The retinex theory of color vision. Scientific America.
  26. Lynch, S. E., Drew, M. S., and Finlayson, k. G. D. (2013). Colour Constancy from Both Sides of the Shadow Edge. In Color and Photometry in Computer Vision Workshop at the International Conference on Computer Vision. IEEE.
  27. Van De Weijer, J., Gevers, T., and Gijsenij, A. (2007a). Edge-based color constancy. Image Processing, IEEE Transactions on, 16(9):2207-2214.
  28. Van De Weijer, J., Schmid, C., and Verbeek, J. (2007b). Using high-level visual information for color constancy. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1-8. IEEE.
  29. Weber, E. (1846). Der Tastsinn und das Gemeingefühl. Handwörterbuch der Physiologie, 3(2):481-588.
Download


Paper Citation


in Harvard Style

Banić N. and Lončarić S. (2015). A Perceptual Measure of Illumination Estimation Error . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 136-143. DOI: 10.5220/0005307501360143


in Bibtex Style

@conference{visapp15,
author={Nikola Banić and Sven Lončarić},
title={A Perceptual Measure of Illumination Estimation Error},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={136-143},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005307501360143},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - A Perceptual Measure of Illumination Estimation Error
SN - 978-989-758-089-5
AU - Banić N.
AU - Lončarić S.
PY - 2015
SP - 136
EP - 143
DO - 10.5220/0005307501360143