Computing Corpus Callosum as Biomarker for Degenerative Disorders

Thomas Kovac, Sammy Rogmans, Frank Van Reeth


The developed framework can automatically extract a plane with minimal corpus callosum area while simultaneously segmenting it. The method used, introduced by Ishaq, treats the corpus callosum area as a function of the plane extraction parameters and it uses deformable registration to generate a displacement field that can be used for the calculation of the corpus callosum area. Our registration framework is accelerated using CUDA, which enables researchers to benchmark huge amounts of data (patients) to test the hypothesis of the corpus callosum evolution as a biomarker for multiple degenerative disorders like e.g. Alzheimer disease and multiple sclerosis (MS).


  1. Aylward, S., Jomier, J., Barre, S., Davis, B., and Ibanez, L. (2007). Optimizing ITK's Registration Methods for Multi-processor, Shared-memory Systems. MICCAI Workshop on Open Source and Open Data.
  2. Barr, A. (1984). Global and Local Deformations of Solid Primitives. SIGGRAPH Computer Graphics, 18(3):21-30.
  3. Bookstein, F. and Green, D. (1993). A feature space for derivatives of deformation. Information Processing in Medical Imaging - Lecture Notes in Computer Science, 687:1-16.
  4. Christensen, G., Rabbitt, R., and Miller, M. (1996). Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing, 5(10):1435-1447.
  5. Compston, A. and Coles, A. (2008). Multiple Sclerosis. The Lancet, 372(9648):1502-1517.
  6. Davatzikos, C., Vaillant, M., Resnick, S., Prince, J., Letovsky, S., and Bryan, R. (1996). A Computerized Approach for Morphological Analysis of the Corpus Callosum. Journal of Computer Assisted Tomography, 20(1):88-97.
  7. Duning, T. and Kloska, S. (2005). Dehydration confounds the assessment of brain atrophy. Neurology, 64(3):548-550.
  8. Hill, D., Batchelor, P., Holden, M., and Hawkes, D. (2001). Medical Image Registration. Physics in Medicine and Biology, 46(3):R1-R45.
  9. Hubel, D. (1995). Eye, brain and vision. WH Freeman.
  10. Ishaq, O. (2008). Algorithms for Image Analysis of Corpus Callosum Degeneration for Multiple Sclerosis. Master's thesis, Simon Fraser University.
  11. Juha, M., Leszek, S., Sten, F., Jakob, B., Olof, F., and Maria, K. (2007). Non-age-related Callosal Brain Atrophy in Multiple Sclerosis: A 9-year Longitudinal MRI Study Representing Four Decades of Disease Development. Journal of Neurology, Neurosurgery, and Psychiatry, 78:375-380.
  12. Metaxas, D. (1997). Physics-Based Deformable Models: Applications to Computer Vision, Graphics and Medical Imaging. Kluwer.
  13. Rohde, G., Aldroubi, A., and Dawant, B. (2003). The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Transactions on Medical Imaging, 22(11):1470-1479.
  14. Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., and Hawkes, D. (1999). Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images. IEEE Transactions on Medical Imaging, 18(8).
  15. Schoenberg, I. (1946). Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions. The Quarterly of Applied Mathematics, 4:45- 99.
  16. Schwarz, L. (2007). Non-rigid Registration Using Freefrom Deformations. Master's thesis, Technische Universität München.
  17. Sederberg, T. and Parry, S. (1986). Free-form Deformation of Solid Geometric Models. SIGGRAPH Computer Graphics, 20(4):151-160.
  18. Shackleford, J. (2011). High-Performance Image Registration Algorithms for Multi-Core Processors. PhD thesis, Drexel University.
  19. Shackleford, J., Kandasamy, N., and Sharp, G. (2010). On developing B-spline registration algorithms for multicore processors. Physics in Medicine and Biology, 55:6329-6351.
  20. Sharp, G., Peroni, M., Li, R., Shackleford, J., and Kandasamy, N. (2010). Evaluation of Plastimatch BSpline Registration on the EMPIRE10 Data Set. Medical Image Analysis for the Clinic: A Grand Challenge, pages 99-108.
  21. Simon, J. (2006). Brain Atrophy in Multiple Sclerosis: What We Know and Would Like to Know. Multiple Sclerosis, 12(6):679-687.
  22. Simon, J., Simon, L., Campion, M., Rudick, R., Cookfair, D., Herndon, R., Richert, J., Salazar, A., Fischer, J., Goodkin, D., Simonian, N., Lajaunie, M., Miller, D., Wende, K., Martens-Davidson, A., Kinkel, R., Munschauer, F., and Brownscheidle, C. (2006). A Longitudinal Study of Brain Atrophy in Relapsing Multiple Sclerosis. Neurology, 12(6):679-687.
  23. Szeliski, R. and Coughlan, J. (1997). Spline-Based Image Registration. International Journal of Computer Vision, 22(3):199-218.
  24. Thirion, J. (1998). Image matching as a diffusion process: an analogy with Maxwell's demons. Medical Imaging Analysis, 2(3):243-260.
  25. Thompson, P. and Toga, A. (1996). A surface-based technique for warping three-dimensional images of the brain. IEEE Transactions on Medical Imaging, 15(4):402-417.
  26. Unser, M. (1999). Splines: A Perfect Fit for Signal and Image Processing. IEEE Signal Processing Magazine, 16(6):22-38.

Paper Citation

in Harvard Style

Kovac T., Rogmans S. and Van Reeth F. (2015). Computing Corpus Callosum as Biomarker for Degenerative Disorders . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-091-8, pages 138-149. DOI: 10.5220/0005310201380149

in Bibtex Style

author={Thomas Kovac and Sammy Rogmans and Frank Van Reeth},
title={Computing Corpus Callosum as Biomarker for Degenerative Disorders},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)},

in EndNote Style

JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)
TI - Computing Corpus Callosum as Biomarker for Degenerative Disorders
SN - 978-989-758-091-8
AU - Kovac T.
AU - Rogmans S.
AU - Van Reeth F.
PY - 2015
SP - 138
EP - 149
DO - 10.5220/0005310201380149