An Interactive Visualization System for Huge Architectural Laser Scans

Thomas Kanzok, Lars Linsen, Paul Rosenthal


This paper describes a system for rendering large (billions of points) point clouds using a strict level-of-detail criterion for managing the data out of core. The system is comprised of an in-core data structure for managing the coarse hierarchy, an out-of-core structure for managing the actual data and a multithreaded rendering framework that handles the structure and is responsible for data caching, LOD-calculations, culling, and rendering. We demonstrate the performance of our approach with two real-world datasets (a 1.8 b points outdoor scene and a 360m points indoor scene).


  1. Bittner, J., Wimmer, M., Piringer, H., and Purgathofer, W. (2004). Coherent hierarchical culling: Hardware occlusion queries made useful. Computer Graphics Forum, 23(3):615-624.
  2. Boggess, J.E., I., Nation, P., and Harmon, M. (1994). Compression of color information in digitized images using an artificial neural network. In Proc of NAECON, pages 772-778 vol.2.
  3. Botsch, M. and Kobbelt, L. (2003). High-quality pointbased rendering on modern GPUs. In Proc. on Pacific Graphics, pages 335-343.
  4. Botsch, M., Spernat, M., and Kobbelt, L. (2004). Phong splatting. In Proc. of SPBG, pages 25-32.
  5. Chou, P. and Meng, T. (2002). Vertex data compression through vector quantization. IEEE Trans. Vis. & Comput. Graph., 8(4):373-382.
  6. Correˆa, W. T., Klosowski, J. T., and Silva, C. T. (2002). iwalk: Interactive out-of-core rendering of large models. Technical report, Technical Report TR-653-02, Princeton University.
  7. Dachsbacher, C., Vogelgsang, C., and Stamminger, M. (2003). Sequential point trees. In Proc. of SIGGRAPH, SIGGRAPH 7803, pages 657-662, New York, NY, USA. ACM.
  8. Elseberg, J., Borrmann, D., and Nüchter, A. (2013). One billion points in the cloud an octree for efficient processing of 3d laser scans. Journal of Photogrammetry and Remote Sensing, 76(0):76 - 88.
  9. Gobbetti, E. and Marton, F. (2004). Layered point clouds. In Proc. of SPBG, SPBG'04, pages 113-120, Aire-laVille, Switzerland, Switzerland. Eurographics Association.
  10. Goswami, P., Erol, F., Mukhi, R., Pajarola, R., and Gobbetti, E. (2013). An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees. The Visual Computer, 29(1):69-83.
  11. Hrabcak, L. and Masserann, A. (2012). Asynchronous buffer transfers. In Cozzi, P. and Riccio, C., editors, OpenGL Insights, pages 391-414. CRC Press.
  12. Kanzok, T., Linsen, L., and Rosenthal, P. (2012). On-thefly Luminance Correction for Rendering of Inconsistently Lit Point Clouds. Journal of WSCG, 20(2):161 - 169.
  13. Laine, S. and Karras, T. (2011). Efficient sparse voxel octrees. IEEE Trans. Vis. & Comp. Graph., 17(8):1048- 1059.
  14. Levoy, M. (1999). The digital michelangelo project. In Proc. on 3-D Digital Imaging and Modeling, pages 2- 11.
  15. Levoy, M. and Whitted, T. (1985). The use of points as a display primitive. Technical report, University of North Carolina, Department of Computer Science.
  16. Lloyd, S. (1982). Least squares quantization in pcm. IEEE Trans. Inform. Theory, 28(2):129-137.
  17. Pineda, J. (1988). A parallel algorithm for polygon rasterization. In Proc. of SIGGRAPH, SIGGRAPH 7888, pages 17-20, New York, NY, USA. ACM.
  18. Preiner, R., Jeschke, S., and Wimmer, M. (2012). Auto splats: Dynamic point cloud visualization on the GPU. In Proc. of EGPGV, pages 139-148.
  19. Rakhmanov, E., Saff, E., and Zhou, Y. (1994). Minimal discrete energy on the sphere. Math. Res. Lett, 1(6):647- 662.
  20. Rusinkiewicz, S. and Levoy, M. (2000). Qsplat: A multiresolution point rendering system for large meshes. In Proc. of SIGGRAPH, SIGGRAPH 7800, pages 343- 352, New York, NY, USA. ACM Press/AddisonWesley Publishing Co.
  21. Saito, T. and Takahashi, T. (1990). Comprehensible rendering of 3-d shapes. SIGGRAPH Comput. Graph., 24(4):197-206.
  22. Westin, C.-F., Peled, S., Gudbjartsson, H., Kikinis, R., and Jolesz, F. A. (1997). Geometrical diffusion measures for MRI from tensor basis analysis. In ISMRM 7897, page 1742, Vancouver Canada.
  23. Wimmer, M. and Scheiblauer, C. (2006). Instant points: Fast rendering of unprocessed point clouds. In Proc. of SPBG, SPBG'06, pages 129-137, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  24. Zwicker, M., Räsänen, J., Botsch, M., Dachsbacher, C., and Pauly, M. (2004). Perspective accurate splatting. In Proc. of Graphics Interface, GI 7804, pages 247- 254, School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada. Canadian HumanComputer Communications Society.

Paper Citation

in Harvard Style

Kanzok T., Linsen L. and Rosenthal P. (2015). An Interactive Visualization System for Huge Architectural Laser Scans . In Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015) ISBN 978-989-758-087-1, pages 265-273. DOI: 10.5220/0005315202650273

in Bibtex Style

author={Thomas Kanzok and Lars Linsen and Paul Rosenthal},
title={An Interactive Visualization System for Huge Architectural Laser Scans},
booktitle={Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015)},

in EndNote Style

JO - Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015)
TI - An Interactive Visualization System for Huge Architectural Laser Scans
SN - 978-989-758-087-1
AU - Kanzok T.
AU - Linsen L.
AU - Rosenthal P.
PY - 2015
SP - 265
EP - 273
DO - 10.5220/0005315202650273