Saliency Detection using Geometric Context Contrast Inferred from Natural Images

Anurag Singh, Chee-Hung Henry Chu, Michael A. Pratt

Abstract

Image saliency detection using region contrast is often based on the premise that salient region has a contrast with the background which becomes a limiting factor if the color of the salient object background is similar. To overcome this problem associated with single image analysis, we propose to collect background regions from a collection of images where generative property of, say, natural images ensures that all the images are spun out of it hence negating any bias. Background regions are differentiated based on their geometric context where we use the ground and sky context as background. Finally, the aggregated map is generated using color contrast between the superpixels segments of the image and collection of background superpixels.

References

  1. Achanta, R., Estrada, F., Wils, P., and Susstrunk, S., 2008. Salient region detection and segmentation. In ICVS, pp 66-75.
  2. Achanta, R., Hemami, S., Estrada, F., and Susstrunk, S., 2009. Frequency-tuned salient region detection. In IEEE CVPR, pp 1597-1604.
  3. Alexe, B., Deselaers, T., and Ferrari, V., 2012. Measuring the objectness of image windows. IEEE Transactions on PAMI, vol. 34, no. 11, pp. 2189-2202.
  4. Borji, A., Sihite, D.N., and Itti, L., 2012. Salient object detection: A benchmark. In ECCV, pp. 414-429.
  5. Chang, K-Y., Liu, T-L., and Lai, S-H., 2011. From cosaliency to co-segmentation: An efficient and fully unsupervised energy minimization model. In IEEE CVPR, pp. 2129-2136.
  6. Cheng, M.-M., Zhang, G.-X., Mitra, N.J., Huang, X., and Hu, S.-M., 2011. Global contrast based salient region detection. In IEEE CVPR, pp.409-416.
  7. Goferman, S., Zelnik-Manor, L., and Tal, A., 2010. Context-aware saliency detection. In IEEE CVPR, pp. 2376-2383.
  8. Harel, J., Koch, C., and Perona, P., 2007. Graph-Based Visual Saliency. In NIPS, pp. 545-552.
  9. Hoiem, D., Efros, A.A., and Hebert, M., 2005. Geometric context from a single image, In IEEE ICCV, vol. 1, pp. 654-661.
  10. Hou, X., and Zhang, L., 2007. Saliency detection: A spectral residual approach. In IEEE CVPR, pages 1-8.
  11. Huazhu. F., Xiaochun, C., Zhuowen, T., 2013. Clusterbased co-saliency detection. IEEE Transactions on Image Processing, vol.22, no.10, pp.3766-3778.
  12. Hyvärinen, A., Hurri, J., and Hoyer, P. O., 2009. Natural Image Statistics: A Probabilistic Approach to Early Computational Vision, Springer-Verlag, London.
  13. Itti, L., Koch, C., and Niebur, E., 1998. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on PAMI, vol 20, no 11, pp. 1254-1259.
  14. Jacobs, D. E., Goldman, D.B., and Shechtman E., 2010. Cosaliency: Where people look when comparing images. In ACM UIST, pp. 219-228.
  15. Li, X., Lu, H., Zhang, L., Ruan, X., and Yang, M-H., 2013. Saliency detection via dense and sparse reconstruction. In IEEE ICCV, pp. 2976-2983.
  16. Ma, Y.-F., and Zhang, H.-J., 2003. Contrast-based image attention analysis by using fuzzy growing. In ACM Multimedia, pages 374-381.
  17. Mukherjee, L., Singh, V., Dyer, C.R., 2009. Halfintegrality based algorithms for cosegmentation of images. In IEEE CVPR, pp.2028-2035.
  18. Oliva, A., and Torralba, A., 2001. Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV, 42:145-175.
  19. Singh, A., Chu, C.H., and Pratt, M.A., 2014. Multiresolution superpixels for visual saliency detection. In IEEE CIMSIVP.
  20. Sun, J., and Ling, H., 2013. Scale and object aware image thumbnailing. International Journal of Computer Vision, vol. 104, no. 2, pp. 135-153.
  21. Torralba, A., 2003. Contextual priming for object detection. IJCV, vol 53, no 2, pp. 169-191.
  22. Toshev, A., Shi, J., and Daniilidis, K., 2007. Image matching via saliency region correspondences. In IEEE CVPR, pp.1-8.
  23. Veksler, O., Boykov, Y., and Mehrani, P., 2010. Superpixels and supervoxels in an energy optimization framework. In ECCV, pp. 211-214.
  24. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., and Torralba, A., 2010. SUN database: Large-scale scene recognition from abbey to zoo. In IEEE CVPR, pp. 3485-3492.
  25. Zhai, Y., and Shah, M., 2006. Visual attention detection in video sequences using spatiotemporal cues. In ACM Multimedia, pages 815-824.
Download


Paper Citation


in Harvard Style

Singh A., Henry Chu C. and A. Pratt M. (2015). Saliency Detection using Geometric Context Contrast Inferred from Natural Images . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 609-616. DOI: 10.5220/0005316906090616


in Bibtex Style

@conference{visapp15,
author={Anurag Singh and Chee-Hung Henry Chu and Michael A. Pratt},
title={Saliency Detection using Geometric Context Contrast Inferred from Natural Images},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={609-616},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005316906090616},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - Saliency Detection using Geometric Context Contrast Inferred from Natural Images
SN - 978-989-758-089-5
AU - Singh A.
AU - Henry Chu C.
AU - A. Pratt M.
PY - 2015
SP - 609
EP - 616
DO - 10.5220/0005316906090616