Combination of Characteristic Green’s Function Technique and Rational Function Fitting Method for Computation of Modal Reflectivity at the Optical Waveguide End-facet

Abdorreza Torabi, Amir Ahmad Shishegar

Abstract

A novel method for computation of modal reflectivity at optical waveguide end-facet is presented. The method is based on the characteristic Green’s function (CGF) technique. Using separability assumption of the structure and rational function fitting method (RFFM), a closed-form field expression is derived for optical planar waveguide. The uniform derived expression consists of discrete and continuous spectrum contributions which denotes guided and radiation modes effects respectively. An optimization problem is then defined to calculate the exact reflection coefficients at the end-facet for all extracted poles obtained from rational function fitting step. The proposed CGF-RFFM-optimization offers superior exactness in comparison with the previous reported CGF-complex images (CI) technique due to contribution of all components of field in the optimization problem. The main advantage of the proposed method lies in its simple implementation as well as precision for any refractive index contrast. Excellent numerical agreements with rigorous methods are shown in several examples.

References

  1. Chen, Y., Lai, Y., Chong, T. C., and Ho, S.-T. (2012). Exact solution of facet reflections for guided modes in highrefractive-index-contrast sub-wavelength waveguide via a fourier analysis and perturbative series summation: Derivation and applications. J. Lightw. Technol., 30(15):2455-2471.
  2. Coleman, T. F. and Li, Y. (1996). An interior trust region approach for nonlinear minimization subject to bounds. SIAM journal on optimization, 6(2):418-445.
  3. Derudder, H., Olyslager, F., De Zutter, D., and van den Berghe, S. (2001). Efficient mode-matching analysis of discontinuities in finite planar substrates using perfectly matched layers. IEEE Trans. Antennas Propag., 49(2):185 -195.
  4. El-Refaei, H., Betty, I., and Yevick, D. (2000). The application of complex Pade approximants to reflection at optical waveguide facets. IEEE Photon. Technol. Lett., 12(2):158-160.
  5. Faraji-Dana, R. (1993a). An Efficient and Accurate Green's Function Analysis of Packaged Microwave Integrated Circuits. Thesis (Ph.D.)-University of Waterloo.
  6. Faraji-Dana, R. (1993b). An Efficient and Accurate Green's Function Analysis of Packaged Microwave Integrated Circuits. Thesis (Ph.D.)-University of Waterloo.
  7. Gelin, P., Petenzi, M., and Citerne, J. (1981). Rigorous analysis of the scattering of surface waves in an abruptly ended slab dielectric waveguide. IEEE Trans. Microw. Theory Techn., 29(2):107 - 114.
  8. Hardy, A. (1984). Formulation of two-dimensional reflectivity calculations for transverse-magnetic-like modes. J. Opt. Soc. Am. A., 1(7):760-763.
  9. Hua, Y. and Sarkar, T. (1989). Generalized pencil-offunction method for extracting poles of an EM system from its transient response. IEEE Trans. Antennas Propag., 37(2):229 -234.
  10. Ikegami, T. (1972). Reflectivity of mode at facet and oscillation mode in double-heterostructure injection lasers. IEEE J. Quantum Electron., 8(6):470-476.
  11. Jamid, H. and Khan, M. (2007). 3-D full-vectorial analysis of strong optical waveguide discontinuities using Pade approximants. IEEE J. Quantum Electron., 43(4):343-349.
  12. Lewin, L. (1975). A method for the calculation of the radiation-pattern and mode-conversion properties of a solid-state heterojunction laser. IEEE Trans. Microw. Theory Techn., 23(7):576-585.
  13. Michalski, K. and Mosig, J. (1997). Multilayered media Green's functions in integral equation formulations. IEEE Trans. Antennas Propagat., 45(3):508 -519.
  14. Parsa, A. and Paknys, R. (2007a). Interior Green's function solution for a thick and finite dielectric slab. IEEE Trans. Antennas Propag., 55(12):3504 -3514.
  15. Parsa, A. and Paknys, R. (2007b). Interior Green's function solution for a thick and finite dielectric slab. IEEE Trans. Antennas Propag., 55(12):3504 -3514.
  16. Rozzi, T. and Veld, G. (1980). Variational treatment of the diffraction at the facet of d.h. lasers and of dielectric millimeter wave antennas. IEEE Trans. Microw. Theory Techn., 28(2):61-73.
  17. Shishegar, A. A. and Faraji-Dana, R. (2003). A closed-form spatial Green's function for finite dielectric structures. Electromagnetics, 23(7):579-594.
  18. Torabi, A., Shishegar, A. A., and Faraji-Dana, R. (2013). Application of the characteristic Green's function technique in closed-form derivation of spatial Green's function of finite dielectric structures. In Computational Electromagnetics Workshop (CEM), 2013, pages 54-55.
  19. Torabi, A., Shishegar, A. A., and Faraji-Dana, R. (2014a). Analysis of modal reflectivity of optical waveguide end-facets by the characteristic Green's function technique. J. Lightw. Technol., 32(6):1168-1176.
  20. Torabi, A., Shishegar, A. A., and Faraji-Dana, R. (2014b). An efficient closed-form derivation of spatial Green's function for finite dielectric structures using characteristic Green's function-rational function fitting method. IEEE Trans. Antennas Propagat., 62(3).
  21. Wei, S. H. and Lu, Y. Y. (2002). Application of Bi-CGSTAB to waveguide discontinuity problems. IEEE Photon. Technol. Lett., 14(5):645-647.
  22. Yevick, D., Bardyszewski, W., Hermansson, B., and Glasner, M. (1991). Split-operator electric field reflection techniques. IEEE Photon. Technol. Lett., 3(6):527- 529.
  23. Yevick, D., Bardyszewski, W., Hermansson, B., and Glasner, M. (1992). Lanczos reduction techniques for electric field reflection. J. Lightw. Technol., 10(9):1234- 1237.
  24. Yu, C. and Yevick, D. (1997). Application of the bidirectional parabolic equation method to optical waveguide facets. J. Opt. Soc. Am. A., 14(7):1448-1450.
Download


Paper Citation


in Harvard Style

Torabi A. and Shishegar A. (2015). Combination of Characteristic Green’s Function Technique and Rational Function Fitting Method for Computation of Modal Reflectivity at the Optical Waveguide End-facet . In Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS, ISBN 978-989-758-093-2, pages 14-21. DOI: 10.5220/0005332300140021


in Bibtex Style

@conference{photoptics15,
author={Abdorreza Torabi and Amir Ahmad Shishegar},
title={Combination of Characteristic Green’s Function Technique and Rational Function Fitting Method for Computation of Modal Reflectivity at the Optical Waveguide End-facet},
booktitle={Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,},
year={2015},
pages={14-21},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005332300140021},
isbn={978-989-758-093-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,
TI - Combination of Characteristic Green’s Function Technique and Rational Function Fitting Method for Computation of Modal Reflectivity at the Optical Waveguide End-facet
SN - 978-989-758-093-2
AU - Torabi A.
AU - Shishegar A.
PY - 2015
SP - 14
EP - 21
DO - 10.5220/0005332300140021