Silicon-on-Insulator Slot-waveguide Design Trade-offs

Patrick Steglich, Claus Villringer, Silvio Dümecke, Yazmin Padilla Michel, Mauro Casalboni, Sigurd Schrader


Silicon-on-insulator slot-waveguide structures are designed and analysed numerically. We present our theoretical investigation of field confinement factors and effective nonlinear areas for different waveguide structures in order to find optimized geometrical dimensions. It is shown that a slot-waveguide with a height of 220 nm, a slot width of 180 nm and a silicon rail width of 180 nm provides a five times higher field confinement in the cladding region compared to conventional strip-waveguides which explains the high sensitivity of slotwaveguide based label-free bio-sensors.


  1. Agrawal, G. (2012). Nonlinear Fiber Optics. Academic Press, 5 edition.
  2. Almeida, V. R., Xu, Q., Barrios, C. A., and Lipson, M. (2004). Guiding and confining light in void nanostructure. Opt. Lett., 29(11):1209-1211.
  3. Baehr-Jones, T., Hochberg, M., Walker, C., and Scherer, A. (2005). High-q optical resonators in silicon-oninsulator-based slot waveguides. Applied Physics Letters, 86(8):081101.
  4. Barrios, C. A., Gylfason, K. B., Sánchez, B., Griol, A., Sohlström, H., Holgado, M., and Casquel, R. (2007). Slot-waveguide biochemical sensor. Opt. Lett., 32(21):3080-3082.
  5. Chuang, S. L. (2009). Physics of Photonic Devices. Wiley, 2 edition.
  6. Claes, T., Molera, J., De Vos, K., Schachtb, E., Baets, R., and Bienstman, P. (2009). Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. Photonics Journal, IEEE, 1(3):197-204.
  7. Dell'Olio, F. and Passaro, V. M. (2007). Optical sensing by optimized silicon slot waveguides. Opt. Express, 15(8):4977-4993.
  8. Feng, N.-N., Michel, J., and Kimerling, L. (2006). Optical field concentration in low-index waveguides. Quantum Electronics, IEEE Journal of, 42(9):885-890.
  9. Koos, C., Jacome, L., Poulton, C., Leuthold, J., and Freude, W. (2007). Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express, 15(10):5976-5990.
  10. Korn, D., Palmer, R., Yu, H., Schindler, P. C., Alloatti, L., Baier, M., Schmogrow, R., Bogaerts, W., Selvaraja, S. K., Lepage, G., Pantouvaki, M., Wouters, J. M., Verheyen, P., Campenhout, J. V., Chen, B., Baets, R., Absil, P., Dinu, R., Koos, C., Freude, W., and Leuthold, J. (2013). Silicon-organic hybrid (soh) iq modulator using the linear electro-optic effect for transmitting 16qam at 112 gbit/s. Opt. Express, 21(11):13219-13227.
  11. Leuthold, J., Koos, C., Freude, W., Alloatti, L., Palmer, R., Korn, D., Pfeifle, J., Lauermann, M., Dinu, R., Wehrli, S., et al. (2013). Silicon-organic hybrid electro-optical devices. Selected Topics in Quantum Electronics, IEEE Journal of, 19(6):3401413-3401413.
  12. Muellner, P., Wellenzohn, M., and Hainberger, R. (2009). Nonlinearity of optimized silicon photonic slot waveguides. Opt. Express, 17(11):9282-9287.
  13. Palik, E. D. (1997). Handbook of Optical Constants of Solids. Academic Press, 1 edition.
  14. Palmer, R., Alloatti, L., Korn, D., Schindler, P., Baier, M., Bolten, J., Wahlbrink, T., Waldow, M., Dinu, R., Freude, W., Koos, C., and Leuthold, J. (2013a). Low power mach-zehnder modulator in silicon-organic hybrid technology. Photonics Technology Letters, IEEE, 25(13):1226-1229.
  15. Palmer, R., Alloatti, L., Korn, D., Schindler, P., Schmogrow, R., Heni, W., Koenig, S., Bolten, J., Wahlbrink, T., Waldow, M., Yu, H., Bogaerts, W., Verheyen, P., Lepage, G., Pantouvaki, M., Van Campenhout, J., Absil, P., Dinu, R., Freude, W., Koos, C., and Leuthold, J. (2013b). Silicon-organic hybrid mzi modulator generating ook, bpsk and 8-ask signals for up to 84 gbit/s. Photonics Journal, IEEE, 5(2):6600907-6600907.
  16. Robinson, J. T., Preston, K., Painter, O., and Lipson, M. (2008). First-principle derivation of gain in high-index-contrast waveguides. Opt. Express, 16(21):16659-16669.
  17. Tsang, H., Wong, C., Liang, T., Day, I., Roberts, S., Harpin, A., Drake, J., and Asghari, M. (2002). Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength. Applied Physics Letters, 80(3):416-418.
  18. Vivien, L. and Pavesi, L., editors (2013). Handbook of Silicon Photonics. CRC Press, 0 edition.
  19. Weimann, C., Schindler, P. C., Palmer, R., Wolf, S., Bekele, D., Korn, D., Pfeifle, J., Koeber, S., Schmogrow, R., Alloatti, L., Elder, D., Yu, H., Bogaerts, W., Dalton, L. R., Freude, W., Leuthold, J., and Koos, C. (2014). Silicon-organic hybrid (soh) frequency comb sources for terabit/s data transmission. Opt. Express, 22(3):3629-3637.

Paper Citation

in Harvard Style

Steglich P., Villringer C., Dümecke S., Padilla Michel Y., Casalboni M. and Schrader S. (2015). Silicon-on-Insulator Slot-waveguide Design Trade-offs . In Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS, ISBN 978-989-758-093-2, pages 47-52. DOI: 10.5220/0005336200470052

in Bibtex Style

author={Patrick Steglich and Claus Villringer and Silvio Dümecke and Yazmin Padilla Michel and Mauro Casalboni and Sigurd Schrader},
title={Silicon-on-Insulator Slot-waveguide Design Trade-offs},
booktitle={Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,},

in EndNote Style

JO - Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,
TI - Silicon-on-Insulator Slot-waveguide Design Trade-offs
SN - 978-989-758-093-2
AU - Steglich P.
AU - Villringer C.
AU - Dümecke S.
AU - Padilla Michel Y.
AU - Casalboni M.
AU - Schrader S.
PY - 2015
SP - 47
EP - 52
DO - 10.5220/0005336200470052