Face Recognition by Fast and Stable Bi-dimensional Empirical Mode Decomposition

Esteve Gallego-Jutglà, Saad Al-Baddai, Karema Al-Subari, Ana Maria Tomé, Elmar W. Lang, Jordi Solé-Casals

Abstract

In this study the use of a new fast and stable decomposition technique, bi-dimensional empirical mode decomposition, is used for face recognition tasks. Images are decomposed individually, and then the distance with reference images is computed. Three different types of distances are tested. Then class association is based on minimum distance and by using a classifier. Preliminary results (90.0% of classification rate) are satisfactory and will justify a deep investigation on how to apply this bi- dimensional decomposition technique for face recognition.

References

  1. Duda, R. O., Hart, P. E. & Stork, D.G., 1995. Pattern Classification and Scene Analysis 2nd ed.
  2. Fukunaga, K., 1990. Introduction to statistical pattern recognition, Academic press.
  3. Gallego-Jutglà, E. et al., 2013. Empirical mode decomposition-based face recognition system. In BIOSIGNALS 2013 - Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing. pp. 445-450.
  4. Iancu, C., Corcoran, P. & Costache, G., 2007. A Review of Face Recognition Techniques for In-Camera Applications. In 2007 International Symposium on Signals, Circuits and Systems. IEEE, pp. 1-4.
  5. Phillips, P. J. et al., 2011. An introduction to the good, the bad, & the ugly face recognition challenge problem. In Face and Gesture 2011. IEEE, pp. 346-353.
  6. Sandwell, D. T., 1987. Biharmonic spline interpolation of Geos-3 and Seasat altimeter data. Geophysical Research Letters, 14(2), pp.139-142.
  7. Travieso, C. M. et al., 2008. Reducción del vector de características de reconocimiento facial. In XXII Simposium de la Unión Científica Internacional de Radio URSI'2008 Universidad Complutense de Madrid.
  8. Wagner, A. et al., 2012. Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE transactions on pattern analysis and machine intelligence, 34(2), pp.372-86.
  9. Wessel, P. & Bercovici, D., 1998. Interpolation with Splines in Tension: A Green's Function Approach. Mathematical Geology, 30(1).
  10. Woodward, J.D., Orlans, N.M. & Higgins, P.T., 2002. Biometrics: Identity Assurance in the Information Age, McGrau-Hill.
  11. Xiao, Q., 2007. Technology review - BiometricsTechnology, Application, Challenge, and Computational Intelligence Solutions. IEEE Computational Intelligence Magazine, 2(2), pp.5-25.
Download


Paper Citation


in Harvard Style

Gallego-Jutglà E., Al-Baddai S., Al-Subari K., Maria Tomé A., Lang E. and Solé-Casals J. (2015). Face Recognition by Fast and Stable Bi-dimensional Empirical Mode Decomposition . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MPBS, (BIOSTEC 2015) ISBN 978-989-758-069-7, pages 385-391. DOI: 10.5220/0005337003850391


in Bibtex Style

@conference{mpbs15,
author={Esteve Gallego-Jutglà and Saad Al-Baddai and Karema Al-Subari and Ana Maria Tomé and Elmar W. Lang and Jordi Solé-Casals},
title={Face Recognition by Fast and Stable Bi-dimensional Empirical Mode Decomposition},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MPBS, (BIOSTEC 2015)},
year={2015},
pages={385-391},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005337003850391},
isbn={978-989-758-069-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MPBS, (BIOSTEC 2015)
TI - Face Recognition by Fast and Stable Bi-dimensional Empirical Mode Decomposition
SN - 978-989-758-069-7
AU - Gallego-Jutglà E.
AU - Al-Baddai S.
AU - Al-Subari K.
AU - Maria Tomé A.
AU - Lang E.
AU - Solé-Casals J.
PY - 2015
SP - 385
EP - 391
DO - 10.5220/0005337003850391