Copper-containing Potassium-Alumina-Borate Glass - Structure and Nonlinear Optical Properties Correlation

Pavel Shirshnev, Nikolaj Nikonorov, Anastasija Babkina, Alexander Kim, Dmitrij Sobolev, Ivan Kislyakov, Svjatoslav Povarov, Inna Belousova, Elena Kolobkova


The paper describes the technology of obtaining potassium-alumina-borate glass with nanocrystals of copper chloride. Glass has transmission more than 75 % in visible range and nonlinear threshold less than 10-5 Joules (at the wavelength of 532 nm). Such low threshold can be explained by special structure of copper-containing nanophase in potassium-alumina-borate glass. In PAB glass low-melting temperatures of nanophase induce nonlinear effects in optics. In phosphate glass copper ions and clusters are responsible for optical nonlinearity.


  1. Lucas F., Cowley A., McNally P. J., 2008. Structural, optical and electrical properties of Co-evaporated CuCl/KCl films. Physica Status Solidi -Vol.6. P.114
  2. Efros, Al. L., Onushchenko, A. A. Yekimov, A. I., 1985. Quantum size effects in semiconductor microcrystals, Sol. St. Comm., Vol.56, P.921
  3. Rivera J., Murray L. A., Hoss P. A,. 1967. Growth of coprus chloride single crystals for optical modulators, Journal of crystal growth., Vol.1. - P.171-176.
  4. Cordona M., 1963. Optical properties of the silver and cuprous halides, Physical Review, Vol.129(1). P.69- 78.
  5. Cowley A. J., 2011. Novel ultra-violet/blue optoelectronic materials and devices based on copper halides (CuHa), PhD thesys, Dublin city university school of electronic engineering
  6. Yano S., Goto T., and Itoh T. 1996. Excitonic optical nonlinearity of CuCl microcrystals in a NaCl matrix, J. Appl. Phys. -.Vol.79. P.8216.
  7. Yasuaki M., Makoto Y., Hideyuki S. 1988. Optical nonlinearities of excitons in CuCl microcrystalls, Applied Physics Letters. - Vol.53. P.1527.
  8. Kondo Y., Kuroiwa Y., Sugimoto N., Manabe T., Ito S. 2000. Ultraviolet irradiation effect on the third-order optical nonlinearity of CuCl-microcrystallite-doped glass, J. Opt. Soc. Am. B -Vol.17.-P.548-554.
  9. Ichimiya M., Ashida M., Yasuda H., Ishihara H., Itoh T. 2009. Room Temperature Degenerate Four-Wave Mixing Due to Ultrafast Radiative Decay of Confined Excitons OSA/CLEO/IQEC P.138.
  10. A. V. Dotsenko, L. B. Glebov, and V. A. Tsekhomsky, 1998. Physics and Chemistry of Photochromic Glasses, CRC Press LLC.
  11. A. A. Onuschenko, G. T. Petrovskii, 1998. Size effects embedded in phase transitions of semiconductor nanoparticles embedded in glass, Journal of noncrystaline solids, embedded in glass. Vol.196. -P.73- 78
  12. P. M. Valov and V. I. Leiman, 2009. Size distribution of CuCl nanoparticles in glass in various stages of nucleation, Phys. Solid State V.52, P.1703.
  13. Imaoka M., Yamazaki T. 1957. Glass formation range of borate systems between a group elements. Rep. Inst. Ind. Sci. Univ. Tokyo. vol. 6, p. 127-183.
  14. Kornilova E. E., Petrovskii G. T. and Stepanov S.A. 1980. Unusual properties of iron ion clusters in poliboric glasses. Dokl.Akad.Nauk SSSR, vol. 251 p. 409-413
  15. I. S. Edelman, S. A. Stepanov, R. D.Ivantsov, T. V.Zarubina, E. E. Kornilova, A. D. Vasil'ev 2001. Borate Glasses with paramagnetic dopants - a new magnetooptic material for the IR spectral range, Glass Physics and Chemistry, Vol. 27, pp. 454-459
  16. N. V.Nikonorov, V. A. Tsekhomskiy, P. S. Shirshnev 2012. Optical glass crystalline material with sharp boundary absorption in the UV region of the spectrum and its production method, Patent of the Russian Federation, ? 2466107.
  17. A. A. Kim, N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, P. S. Shirshnev 2011. Nonlinear optical effects in glasses containing copper chloride nanocrystalls, Technical Physics Letters, V.37, P.401- 403
  18. V. Golubkov, A. Kim, N. Nikonorov, V. Tsekomskii, P. Shirshnev 2012. Precipitation of nanosized crystals CuBr and CuCl in potassium aluminoborate glasses, Glass Physics and Chemistry., V. 38, P. 259-268
  19. Babkina A. N., Nikonorov N. V., Shakhverdov T. A., Shirshnev P. S., Sidorov A. I. 2014. Luminescent thermochromism in potassium-alumina-borate glass with copper-containing molecular clusters at elevated temperatures, Optical Materials. Vol. 116 pp. 773-777.
  20. Babkina A. N., Nikonorov N. V., Sidorov A. I., Shirshnev P. S., Shakhverdov T. A. 2014. The effect of temperature on the luminescence spectra of potassiumaluminum borate and silicate glasses with copper(I) and silver ions, Optics and spectroscopy. Vol. 116. pp. 84-90.
  21. Li Qiaohong , Wu Kechen ,Wei Yongqin, Sa Rongjian, Cui Yiping, Lu Canggui, Zhu Jing and He Jiangang 2009. Second-order nonlinear optical properties of transition metal clusters [MoS4Cu4X2Py2] (M = Mo, W; X = Br, I) Phys. Chem. Chem. Phys., V.11, 4490- 4497

Paper Citation

in Harvard Style

Shirshnev P., Nikonorov N., Babkina A., Kim A., Sobolev D., Kislyakov I., Povarov S., Belousova I. and Kolobkova E. (2015). Copper-containing Potassium-Alumina-Borate Glass - Structure and Nonlinear Optical Properties Correlation . In Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-092-5, pages 108-112. DOI: 10.5220/0005339701080112

in Bibtex Style

author={Pavel Shirshnev and Nikolaj Nikonorov and Anastasija Babkina and Alexander Kim and Dmitrij Sobolev and Ivan Kislyakov and Svjatoslav Povarov and Inna Belousova and Elena Kolobkova},
title={Copper-containing Potassium-Alumina-Borate Glass - Structure and Nonlinear Optical Properties Correlation},
booktitle={Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},

in EndNote Style

JO - Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Copper-containing Potassium-Alumina-Borate Glass - Structure and Nonlinear Optical Properties Correlation
SN - 978-989-758-092-5
AU - Shirshnev P.
AU - Nikonorov N.
AU - Babkina A.
AU - Kim A.
AU - Sobolev D.
AU - Kislyakov I.
AU - Povarov S.
AU - Belousova I.
AU - Kolobkova E.
PY - 2015
SP - 108
EP - 112
DO - 10.5220/0005339701080112