Techniques for Effective and Efficient Fire Detection from Social Media Images

Marcos V. N. Bedo, Gustavo Blanco, Willian D. Oliveira, Mirela T. Cazzolato, Alceu F. Costa, Jose F. Rodrigues Jr., Agma J. M. Traina, Caetano Traina Jr.

Abstract

Crowdsourcing and social media could provide valuable information to support decision making in crisis management, such as in accidents, explosions and fires. However, much of the data from social media are images, which are uploaded in a rate that makes it impossible for human beings to analyze them. Despite the many works on image analysis, there are no fire detection studies on social media. To fill this gap, we propose the use and evaluation of a broad set of content-based image retrieval and classification techniques for fire detection. Our main contributions are: (i) the development of the Fast-Fire Detection method (FFireDt), which combines feature extractor and evaluation functions to support instance-based learning; (ii) the construction of an annotated set of images with ground-truth depicting fire occurrences – the Flickr-Fire dataset; and (iii) the evaluation of 36 efficient image descriptors for fire detection. Using real data from Flickr, our results showed that FFireDt was able to achieve a precision for fire detection that was comparable to that of human annotators. Therefore, our work shall provide a solid basis for further developments on monitoring images from social media and crowdsourcing.

References

  1. Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instancebased learning algorithms. Mach. Learn., 6(1):37-66.
  2. Bedo, M. V. N., Traina, A. J. M., and Traina Jr., C. (2014). Seamless integration of distance functions and feature vectors for similarity-queries processing. Journal of Information and Data Management, 5(3):308-320.
  3. Celik, T., Demirel, H., Ozkaramanli, H., and Uyguroglu, M. (2007). Fire detection using statistical color model in video sequences. Journal of Visual Communication and Image Representation, 18(2):176 - 185.
  4. Chunyu, Y., Jun, F., Jinjun, W., and Yongming, Z. (2010). Video fire smoke detection using motion and color features. Fire Technology, 46(3):651-663.
  5. Dimitropoulos, K., Barmpoutis, P., and G., N. (2014). Spatio-temporal flame modeling and dynamic texture analysis for automatic video-based fire detection. Cirs. and Sys. for Video Technology, PP(99):7-14.
  6. Doeller, M. and Kosch, H. (2008). The mpeg-7 multimedia database system (mpeg-7 mmdb). Journal of Systems and Software, 81(9):1559 - 1580.
  7. Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. A. (2006). Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
  8. IEEE MultiMedia (2002). Mpeg-7: The generic multimedia content description standard, part 1. IEEE MultiMedia, 9(2):78-87.
  9. Kasutani, E. and Yamada, A. (2001). The mpeg-7 color layout descriptor: a compact image feature description for high-speed image/video segment retrieval. In Int. Conf. on Image Processing, pages 674-677 vol.1.
  10. Ko, B. C., Cheong, K.-H., and Nam, J.-Y. (2009). Fire detection based on vision sensor and support vector machines. Fire Safety Journal, 44(3):322 - 329.
  11. Kudyba, S. (2014). Big Data, Mining, and Analytics: Components of Strategic Decision Making. Taylor & Francis Group.
  12. Lee, K.-L. and Chen, L.-H. (2005). An efficient computation method for the texture browsing descriptor of mpeg-7. Image Vision Comput., 23(5):479-489.
  13. Liu, C.-B. and Ahuja, N. (2004). Vision based fire detection. In Int. Conf. on Pattern Recognition., volume 4, pages 134-137 Vol.4.
  14. Manjunath, B. S., Ohm, J. R., Vasudevan, V. V., and Yamada, A. (2001). Color and texture descriptors. IEEE Cir. and Sys. for Video Technol., 11(6):703-715.
  15. Ojala, T., Aittola, M., and Matinmikko, E. (2002). Empirical evaluation of mpeg-7 xm color descriptors in content-based retrieval of semantic image categories. In Int. Conf. on Pattern Recognition, volume 2, pages 1021-1024 vol.2.
  16. Park, D. K., Jeon, Y. S., and Won, C. S. (2000). Efficient use of local edge histogram descriptor. In ACM Workshops on Multimedia, pages 51-54. ACM.
  17. Russo, M. R. (2013). Emergency management professional development: Linking information communication technology and social communication skills to enhance a sense of community and social justice in the 21st century. In Crisis Management: Concepts, Methodologies, Tools and Applications, pages 651- 663. IGI Global.
  18. Sato, M., Gutu, D., and Horita, Y. (2010). A new image quality assessment model based on the MPEG-7 descriptor. In Advances in Multimedia Information Processing, pages 159-170. Springer.
  19. Sikora, T. (2001). The mpeg-7 visual standard for content description-an overview. IEEE Cir. and Sys. for Video Technol., 11(6):696-702.
  20. Tamura, S., Tamura, K., Kitakami, H., and Hirahara, K. (2012). Clustering-based burst-detection algorithm for web-image document stream on social media. In IEEE Int. Conf. on Systems, Man, and Cybernetics, pages 703-708. IEEE.
  21. Tjondronegoro, D. and Chen, Y.-P. (2002). Content-based indexing and retrieval using mpeg-7 and x-query in video data management systems. World Wide Web, 5(3):207-227.
  22. Villela, K., Breiner, K., Nass, C., Mendonca, M., and Vieira, V. (2014). A smart and reliable crowdsourcing solution for emergency and crisis management. In Interdisciplinary Information Management Talks, Podebrady, Czech Republic.
  23. Wnukowicz, K. and Skarbek, W. (2003). Colour temperature estimation algorithm for digital images - properties and convergence. In Opto Eletronics Review, volume 11, pages 193-196.
  24. Zezula, P., Amato, G., Dohnal, V., and Batko, M. (2006). Similarity Search - The Metric Space Approach, volume 32 of Advances in Database Systems. Springer Publishing Company, Berlin, Heidelberg.
Download


Paper Citation


in Harvard Style

V. N. Bedo M., Blanco G., D. Oliveira W., T. Cazzolato M., F. Costa A., F. Rodrigues Jr. J., J. M. Traina A. and Traina Jr. C. (2015). Techniques for Effective and Efficient Fire Detection from Social Media Images . In Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-096-3, pages 34-45. DOI: 10.5220/0005341500340045


in Bibtex Style

@conference{iceis15,
author={Marcos V. N. Bedo and Gustavo Blanco and Willian D. Oliveira and Mirela T. Cazzolato and Alceu F. Costa and Jose F. Rodrigues Jr. and Agma J. M. Traina and Caetano Traina Jr.},
title={Techniques for Effective and Efficient Fire Detection from Social Media Images},
booktitle={Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2015},
pages={34-45},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005341500340045},
isbn={978-989-758-096-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Techniques for Effective and Efficient Fire Detection from Social Media Images
SN - 978-989-758-096-3
AU - V. N. Bedo M.
AU - Blanco G.
AU - D. Oliveira W.
AU - T. Cazzolato M.
AU - F. Costa A.
AU - F. Rodrigues Jr. J.
AU - J. M. Traina A.
AU - Traina Jr. C.
PY - 2015
SP - 34
EP - 45
DO - 10.5220/0005341500340045