Structure from Motion in the Context of Active Scanning

Johannes Köhler, Tobias Nöll, Norbert Schmitz, Bernd Krolla, Didier Stricker


In this paper, we discuss global device calibration based on Structure from Motion (SfM) (Hartley and Zisserman, 2004) in the context of active scanning systems. Currently, such systems are usually pre-calibrated once and partial, unaligned scans are then registered using mostly variants of the Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992). We demonstrate, that SfM-based registration from visual features yields a significantly higher precision. Moreover, we present a novel matching strategy that reduces the influence of an object’s visual features, which can be of low quality, and introduce novel hardware that allows to apply SfM to untextured objects without visual features.


  1. 7 Audet, S. and Okutomi, M. (2009). A user-friendly method to geometrically calibrate projector-camera systems. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 0:47-54.
  2. Bergevin, R., Soucy, M., Gagnon, H., and Laurendeau, D. (1996). Towards a general multi-view registration technique. IEEE Trans. Pattern Anal. Mach. Intell., 18(5):540-547.
  3. Besl, P. J. and McKay, N. D. (1992). A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2).
  4. Curless, B. and Levoy, M. (1996). A volumetric method for building complex models from range images. In Proceedings of SIGGRAPH, pages 303-312.
  5. Dold, C. and Brenner, C. (2006). Registration of terrestrial laser scanning data using planar patches and image data. In Int. Arch. Photogramm. Remote Sens., pages 25-27.
  6. Du, S., Zheng, N., Xiong, L., Ying, S., and Xue, J. (2010). Scaling iterative closest point algorithm for registration of m-d point sets. J. Vis. Comun. Image Represent., 21(5-6):442-452.
  7. Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381-395.
  8. Furuakwa, R., Inose, K., and Kawasaki, H. (2009). Multiview reconstruction for projector camera systems based on bundle adjustment. In CVPR Workshops.
  9. Gherardi, R. and Fusiello, A. (2010). Practical autocalibration. In ECCV (1), volume 6311 of Lecture Notes in Computer Science, pages 790-801. Springer.
  10. Griesser, A. and Van Gool, L. (2006). Automatic interactive calibration of multi-projector-camera systems. In CVPR Workshops.
  11. Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Second edition.
  12. Holroyd, M., Lawrence, J., and Zickler, T. (2010). A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance. Proceedings of SIGGRAPH.
  13. Huang, Q.-X., Adams, B., and Wand, M. (2007). Bayesian surface reconstruction via iterative scan alignment to an optimized prototype. In Proceedings of Eurographics SGP.
  14. Köhler, J., Nöll, T., Reis, G., and Stricker, D. (2013). A full-spherical device for simultaneous geometry and reflectance acquisition. In IEEE Workshop on Applications of Computer Vision (WACV).
  15. Krishnan, S., Lee, P. Y., Moore, J. B., and Venkatasubramanian, S. (2005). Global registration of multiple 3d point sets via optimization-on-a-manifold. In Proceedings of Eurographics SGP.
  16. Lepetit, V., Moreno-Noguer, F., and Fua, P. (2009). Epnp: An accurate o(n) solution to the pnp problem. Int. J. Comput. Vision, 81(2):155-166.
  17. Lowe, D. (1999). Object recognition from local scaleinvariant features. In Proceedings of ICCV.
  18. Moreno, D. and Taubin, G. (2012). Simple, accurate, and robust projector-camera calibration. In Proceedings of 3DIMPVT.
  19. Pulli, K. (1999). Multiview registration for large data sets. In Proceedings of 3DIM.
  20. Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants of the ICP algorithm. In Proceedings of 3DIM.
  21. Sadlo, F., Weyrich, T., Peikert, R., and Gross, M. (2005). A practical structured light acquisition system for pointbased geometry and texture. Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 0:89-145.
  22. Salvi, J., Matabosch, C., Fofi, D., and Forest, J. (2007). A review of recent range image registration methods with accuracy evaluation. Image Vision Comput., 25(5):578-596.
  23. Seo, J. K., Sharp, G. C., and Lee, S. W. (2005). Range data registration using photometric features. In Proceedings of CVPR.
  24. Tam, G. K. L., Cheng, Z.-Q., Lai, Y.-K., Langbein, F. C., Liu, Y., Marshall, D., Martin, R. R., Sun, X.-F., and Rosin, P. L. (2013). Registration of 3d point clouds and meshes: A survey from rigid to nonrigid. IEEE Trans. Vis. Comput. Graphics, 19(7).
  25. Toldo, R., Beinat, A., and Crosilla, F. (2010). Global registration of multiple point clouds embedding the generalized procrustes analysis into an icp framework. In Proc. 3DPVT 2010 Conf.
  26. Torsello, A., Rodola, E., and Albarelli, A. (2011). Multiview registration via graph diffusion of dual quaternions. CVPR.
  27. van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. (2011). A survey on shape correspondence. Computer Graphics Forum, 30(6):1681-1707.
  28. Wang, K., Lavoué, G., Denis, F., Baskurt, A., and He, X. (2010). A benchmark for 3D mesh watermarking. In Proc. of the IEEE International Conference on Shape Modeling and Applications, pages 231-235.
  29. Weinmann, M., Schwartz, C., Ruiters, R., and Klein, R. (2011). A multi-camera, multi-projector superresolution framework for structured light. In Proceedings of 3DIMPVT.
  30. Weise, T., Wismer, T., Leibe, B., and Van Gool, L. (2009). In-hand scanning with online loop closure. In ICCV Workshops.
  31. Williams, J. A. and Bennamoun, M. (2001). Simultaneous registration of multiple corresponding point sets. Computer Vision and Image Understanding, 81(1):117-142.
  32. Zeisl, B., Georgel, P. F., Schweiger, F., Steinbach, E., and Navab, N. (2009). Estimation of location uncertainty for scale invariant feature points. In Proc. BMVC, pages 57.1-57.12.

Paper Citation

in Harvard Style

Köhler J., Nöll T., Schmitz N., Krolla B. and Stricker D. (2015). Structure from Motion in the Context of Active Scanning . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-091-8, pages 620-628. DOI: 10.5220/0005353906200628

in Bibtex Style

author={Johannes Köhler and Tobias Nöll and Norbert Schmitz and Bernd Krolla and Didier Stricker},
title={Structure from Motion in the Context of Active Scanning},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)},

in EndNote Style

JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)
TI - Structure from Motion in the Context of Active Scanning
SN - 978-989-758-091-8
AU - Köhler J.
AU - Nöll T.
AU - Schmitz N.
AU - Krolla B.
AU - Stricker D.
PY - 2015
SP - 620
EP - 628
DO - 10.5220/0005353906200628