Open Framework for Combined Pedestrian Detection

Floris De Smedt, Toon Goedemé

Abstract

Pedestrian detection is a topic in computer vision of great interest for many applications. Due to that, a large amount of pedestrian detection techniques are presented in current literature, each one improving previous techniques. The improvement in accuracy in recent pedestrian detection, is commonly in combination with a higher computational requirement. Although, recently a technique was proposed to combine multiple detection algorithms to improve accuracy instead. Since the evaluation speed of this combination is dependent on the detection algorithm it uses, we provide an open framework that includes multiple pedestrian detection algorithms, and the technique to combine them. We show that our open implementation is superior on speed, accuracy and peak memory-use when compared to other publicly available implementations.

References

  1. Benenson, R., Mathias, M., Timofte, R., and Van Gool, L. (2012). Pedestrian detection at 100 frames per second. In CVPR. IEEE.
  2. Benenson, R., Mathias, M., Tuytelaars, T., and Van Gool, L. (2013). Seeking the strongest rigid detector. In CVPR. IEEE.
  3. Benenson, R., Omran, M., Hosang, J., and Schiele, B. (2014). Ten years of pedestrian detection, what have we learned?
  4. Bourdev, L. and Brandt, J. (2005). Robust object detection via soft cascade. In CVPR, volume 2. IEEE.
  5. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In CVPR, volume 1. IEEE.
  6. De Smedt, F., Struyf, L., Beckers, S., Vennekens, J., De Samblanx, G., and Goedemé, T. (2012). Is the game worth the candle? evaluation of opencl for object detection algorithm optimization. PECCS.
  7. De Smedt, F., Van Beeck, K., Tuytelaars, T., and Goedemé, T. (2013). Pedestrian detection at warp speed: Exceeding 500 detections per second. In CVPRW. IEEE.
  8. De Smedt, F., Van Beeck, K., Tuytelaars, T., and Goedemé, T. (2014). The combinator: optimal combination of multiple pedestrian detectors. In ICPR.
  9. Dollár, P. (2013). Piotrs image and video matlab toolbox (pmt). Software available at: http://vision. ucsd. edu/˜ pdollar/toolbox/doc/index. html.
  10. Dollár, P., Appel, R., Belongie, S., and Perona, P. (2014). Fast feature pyramids for object detection. PAMI, 36(8).
  11. Dollár, P., Appel, R., and Kienzle, W. (2012a). Crosstalk cascades for frame-rate pedestrian detection. In ECCV.
  12. Dollár, P., Belongie, S., and Perona, P. (2010). The fastest pedestrian detector in the west. In BMVC.
  13. Dollár, P., Tu, Z., Perona, P., and Belongie, S. (2009). Integral channel features. In BMVC, volume 2.
  14. Dollár, P., Wojek, C., Schiele, B., and Perona, P. (2012b). Pedestrian detection: An evaluation of the state of the art. PAMI, 34.
  15. Dubout, C. and Fleuret, F. (2012). Exact acceleration of linear object detectors. In ECCV. Springer.
  16. Felzenszwalb, P., McAllester, D., and Ramanan, D. (2008). A discriminatively trained, multiscale, deformable part model. In CVPR. IEEE.
  17. Felzenszwalb, P. F., Girshick, R. B., and McAllester, D. (2010a). Cascade object detection with deformable part models. In CVPR. IEEE.
  18. Felzenszwalb, P. F., Girshick, R. B., and McAllester, D. (2010b). Discriminatively trained deformable part models, release 4. http://people.cs.uchicago.edu/ pff/latent-release4/.
  19. Mathias, M., Benenson, R., Timofte, R., and Gool, L. V. (2013). Handling occlusions with franken-classifiers. In ICCV. IEEE.
  20. Park, D., Ramanan, D., and Fowlkes, C. (2010). Multiresolution models for object detection. In ECCV. Springer.
Download


Paper Citation


in Harvard Style

De Smedt F. and Goedemé T. (2015). Open Framework for Combined Pedestrian Detection . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 551-558. DOI: 10.5220/0005359205510558


in Bibtex Style

@conference{visapp15,
author={Floris De Smedt and Toon Goedemé},
title={Open Framework for Combined Pedestrian Detection},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={551-558},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005359205510558},
isbn={978-989-758-090-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)
TI - Open Framework for Combined Pedestrian Detection
SN - 978-989-758-090-1
AU - De Smedt F.
AU - Goedemé T.
PY - 2015
SP - 551
EP - 558
DO - 10.5220/0005359205510558