Laplacian Unitary Domain for Texture Morphing

Antoni Gurguí, Debora Gil, Enric Martí

Abstract

Deformation of expressive textures is the gateway to realistic computer synthesis of expressions. By their good mathematical properties and flexible formulation on irregular meshes, most texture mappings rely on solutions to the Laplacian in the cartesian space. In the context of facial expression morphing, this approximation can be seen from the opposite point of view by neglecting the metric. In this paper, we use the properties of the Laplacian in manifolds to present a novel approach to warping expressive facial images in order to generate a morphing between them.

References

  1. Beier, T. and Neely, S. Feature-based image metamorphosis. SIGGRAPH'92.
  2. Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimization via graph cuts. TPAMI.
  3. Davies, E. (1989). Heat Kernels and Spectral Theory. Cambridge University Press.
  4. Desbrun, M., Meyer, M., and Alliez, P. (2002). Intrinsic parameterizations of surface meshes. In Comp Graph Forum.
  5. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. Multiresolution analysis of arbitrary meshes. In SIGGRAPH 7895.
  6. Evans, L. C. (1998). Partial Differential Equations. American Mathematical Society.
  7. Floater, M. and Hormann, K. (2005). Survey in Advances in multiresolution for geometric modelling.
  8. Lee, S.-Y., CHWA, K.-Y., HAHN, J., and SHIN, S. Y. (1996). Image Morphing Using Deformation Techniques. J VCA.
  9. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. (2002). Least squares conformal maps for automatic texture atlas generation. ACM TOG.
  10. Lipman, Y., Levin, D., and Cohen-Or, D. (2008). Green Coordinates. ACM Trans. Graph.
  11. Savran, A. and Sankur, B. (2008). Non-rigid registration of 3D surfaces by deformable 2D triangular meshes. In CVPRW 7808.
  12. Smythe, D. (1990). A two-pass mesh warping alogrithm for object transformation and image interpolation. ILM Computer Graphics Department.
  13. Spivak, M. (1965). Calculus on manifolds. A modern approach to classical theorems of advanced calculus. W. A. Benjamin, Inc.
  14. Tutte, W. T. (1963). How to draw a graph.
  15. Vera, S., Ballester, M. A. G., and Gil, D. (2014). Anatomical parameterization for volumetric meshing of the liver. In SPIE.
  16. Wolberg, G. (1998). Image morphing: a survey. The Visual Computer.
  17. Wu, E. and Liu, F. (2012). Robust image metamorphosis immune from ghost and blur. The Visual Computer.
  18. Xu, K., Zhang, H., Cohen-Or, D., and Xiong, Y. (2009). Dynamic harmonic fields for surface processing. Computers and Graphics.
  19. Yoshizawa, S., Belyaev, A., and Seidel, H. P. (2004). A fast and simple stretch-minimizing mesh parameterization. Proc. Shape Modeling Int.
  20. Zell, E. and Botsch, M. (2013). ELASTIFACE: Matching and Blanding Textured Faces. In NPAR 7813.
Download


Paper Citation


in Harvard Style

Gurguí A., Gil D. and Martí E. (2015). Laplacian Unitary Domain for Texture Morphing . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 693-699. DOI: 10.5220/0005362206930699


in Bibtex Style

@conference{visapp15,
author={Antoni Gurguí and Debora Gil and Enric Martí},
title={Laplacian Unitary Domain for Texture Morphing},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={693-699},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005362206930699},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - Laplacian Unitary Domain for Texture Morphing
SN - 978-989-758-089-5
AU - Gurguí A.
AU - Gil D.
AU - Martí E.
PY - 2015
SP - 693
EP - 699
DO - 10.5220/0005362206930699