Hybrid-Intelligent Mobile Indoor Location Using Wi-Fi Signals - Location Method Using Data Mining Algorithms and Type-2 Fuzzy Logic Systems

Manuel Castañón-Puga, Abby Salazar-Corrales, Carelia Gaxiola-Pacheco, Guillermo Licea, Miguel Flores-Parra, Eduardo Ahumada-Tello

Abstract

Technology with situational awareness needs a lot of information of the environment to execute the correct task at the correct moment. Location of the user is typical information to achieve the goal. This work proposes a mobile application that enables the indoor location of smartphones using the potential infrastructure given by Wireless Local Area Networks. This infrastructure goes beyond GPS (Global Position System) where signal is weak or is not available for indoors. This application uses an alternative and unconventional method to indoor location using Wi-Fi RSSI fingerprinting as well as an estimation based on Type-2 fuzzy inference systems provided by the developed framework JT2FIS. Wi-Fi Fingerprinting creates a radio map of a given area based on the RSSI data from several access points (APs) and generates a set of RSSI data for a given zone location. Consequently Data Mining is required for clustering the obtained set of data and generating the structure of a Type-2 Mamdani or Takagi-Sugeno Fuzzy Inference System; thus new RSSI values are introduced to the Type-2 Fuzzy Inference System to obtain an estimation of the user zone location.

References

  1. Bezdek, J. C., Ehrlich, R., and Full, W. (1984). Fcm: The fuzzy c-means clustering algorithm. Computers and Geosciences, 10(2-3):191-203.
  2. Bozkir, S. and Sezer, E. (2013). Fuat - a fuzzy clustering analysis tool. In Expert Systems with Applications, FUZZYSS11: 2nd International Fuzzy Systems Symposium, vol. 40.
  3. Cai, A., Quek, C., and L., M. D. (2007). Type-2 ga-tsk fuzzy neural network. In Evolutionary Computation. CEC 2007 IEEE Congress.
  4. Chai, W., Zhou, J., Chen, C., Nies, H., and Loeld, O. (2011). Continuous indoor localization and navigation based on low-cost ins/wi-fi integration. In International Conference of Positioning and Indoor Navigation.
  5. Chiu, S. (1994). Fuzzy model identication based on cluster estimation. In Journal of Intelligent and Fuzzy Systems, vol. 2.
  6. Crows, T. (1999). Introduction to Data Mining and Knowledge Discovery. Two Crows Corporation.
  7. Dey, A. (2001). Understanding and using context. Personal and Ubiquitous Computing, 5(1).
  8. Han, J. and Kamber, M. (1998). DataMining: Concepts and Techiques. Morgan Kaufmann, 2nd edition.
  9. Hwang, S. and Donghui, Y. (2012). Gps localization improvement of smart- phones using built-in sensors. nternational Journal of Smart Home, 6.
  10. Jang, J., Sun, C., and Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. MATLAB Curriculum Series. Prentice Hall.
  11. Navarro, E., Peuker, B., and Quan, M. (2011). Wi-Fi Localization Using RSSI Fingerprinting. PhD thesis, Computer Engineering Department.
  12. Ren, Q., Baron, L., and Balanzisnki, M. (2006). Type-2 takagi-sugeno-kang fuzzy logic modeling using subtractive clustering. In Fuzzy Information Processing Society. NAFIPS 2006. Annual meeting of the North American.
  13. Sanchez, L., noz, L. M., Galache, J., Sotres, P., Santana, J., and Gutierrez, V. (2014). Smartsantander: Iot experimentation over a smart city testbed. Computer Networks.
  14. Vaidehi, V., Monica, S., Saafer, S. S., Deepika, M., and Saangeetha, S. (2008). A prediction system based on fuzzy logic. In Proceedings of the World Comgress on Engeineering and Computer Science, WCECS 2008.
  15. Yin, X. F., Khoo, L. P., and Chong, Y. T. (2013). A fuzzy cmeans based hybrid evolutionary approach to the clustering of supply chain. Computers and Industrial Engineering, 66(4):768-780.
  16. Ying, H., Ding, Y., Li, S., and Shao, S. (1998). Typical takagi-sugeno and mamdani fuzzy systems as universal approximators: Necessary conditions and comparison. In Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Conference Vol 1.
  17. Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3):338-353.
Download


Paper Citation


in Harvard Style

Castañón-Puga M., Salazar-Corrales A., Gaxiola-Pacheco C., Licea G., Flores-Parra M. and Ahumada-Tello E. (2015). Hybrid-Intelligent Mobile Indoor Location Using Wi-Fi Signals - Location Method Using Data Mining Algorithms and Type-2 Fuzzy Logic Systems . In Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-096-3, pages 609-615. DOI: 10.5220/0005369806090615


in Bibtex Style

@conference{iceis15,
author={Manuel Castañón-Puga and Abby Salazar-Corrales and Carelia Gaxiola-Pacheco and Guillermo Licea and Miguel Flores-Parra and Eduardo Ahumada-Tello},
title={Hybrid-Intelligent Mobile Indoor Location Using Wi-Fi Signals - Location Method Using Data Mining Algorithms and Type-2 Fuzzy Logic Systems},
booktitle={Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2015},
pages={609-615},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005369806090615},
isbn={978-989-758-096-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Hybrid-Intelligent Mobile Indoor Location Using Wi-Fi Signals - Location Method Using Data Mining Algorithms and Type-2 Fuzzy Logic Systems
SN - 978-989-758-096-3
AU - Castañón-Puga M.
AU - Salazar-Corrales A.
AU - Gaxiola-Pacheco C.
AU - Licea G.
AU - Flores-Parra M.
AU - Ahumada-Tello E.
PY - 2015
SP - 609
EP - 615
DO - 10.5220/0005369806090615