Discretization Method for the Detection of Local Extrema and Trends in Non-discrete Time Series

Konstantinos F. Xylogiannopoulos, Panagiotis Karampelas, Reda Alhajj

2015

Abstract

Mining, analysis and trend detection in time series is a very important problem for forecasting purposes. Many researchers have developed different methodologies applying techniques from different fields of science in order to perform such analysis. In this paper, we propose a new discretization method that allows the detection of local extrema and trends inside time series. The method uses sliding linear regression of specific time intervals to produce a new time series from the angle of each regression line. The new time series produced allows the detection of local extrema and trends in the original time series. We have conducted several experiments on financial time series in order to discover trends as well as pattern and periodicity detection to forecast future behavior of Dow Jones Industrial Average 30 Index.

References

  1. Balkin, S.D., Ord, K., 2000. Automatic Neural Network Modeling for Univariate Time Series. International Journal of Forecasting, (1)6,4, pp. 509-515.
  2. Bao, D., 2008. A Generalized Model for Financial Time Series Representation and Prediction. Applied Intelligence, (29), pp. 1-11, doi: 10.1007/s10489-007-00631.
  3. Bao, D.N., Vy, N.D.K., Anh, D.T., 2013. A hybrid method for forecasting trend and seasonal time series. 2013 IEEE RIVF International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), pp.203-208.
  4. Chen, Y.S., Cheng, C.H., Tsai, W.L., 2014. Modeling Fitting-Function-Based Fuzzy Time Series Patterns for Evolving Stock Index Forecasting. Applied Intelligence, doi: 10.1007/s10489-014-0520-6.
  5. De Gooijer, J.G., Hyndman, R., 2006. 25 Years of Time Series Forecasting. International Journal of Forecasting, (22), pp. 443-473.
  6. Edwards, R., Magee, J., Bassetti, W.H.C., 2007. Technical Analysis of Stocks and Trends. CRC Press. 9th edition.
  7. Esling, P., Agon, C., 2012. Time-Series Data Mining. ACM Computing Surveys (CSUR), (45)1,12.
  8. Gardner, E.S.Jr., McKenzie, E., 1985. Forecasting Trends in Time Series. Management Science, (31)10, pp. 1237- 1246.
  9. Guerrero, V.M., Galicia-Vasquez, A., 2010. Trend Estimation of Financial Time Series, Applied Stochastic Models in Business and Industry, (26), pp. 205-223.
  10. Kovalerchuck, B., Vityaev, E., 2000. Data Mining in Finance: Advances in Relational and Hybrid Methods. Kluwer Academic Publishers, ISBN 0792378040.
  11. Muhlbauer, A., Spichtinger, P., Lohmann, U., 2009. Application and Comparison of Robust Linear Regression Methods for Trend Estimation. Journal of Applied Meteorology and Climatology [1558-8424] Spichtinger, Peter, (48)9, pp.1961-1970.
  12. Muller, K.R., Smola, J.A., Scholkopf, B., 1997. Prediction Time Series with Support Vector Machines[C]. In Proceedings of International Conference on Artificial Neural Networks, Lausanne, pp. 999-1004.
  13. Pring, M., 2002. Technical Analysis Explained. McGrawHill. New York, NY, 4th edition. ISBN 0071226699.
  14. Qin, L.P., Bai, M., 2009. Predicting Trend in Futures Prices Time Series Using a New Association Rules Algorithm. 16th International Conference on Management Science & Engineering 2009, pp. 1511-1517.
  15. Rasheed, F., Alshalfa M., Alhajj, R., 2010. Efficient Periodicity Mining in Time Series Databases Using Suffix Trees. IEEE TKDE, (22)20, pp. 1-16.
  16. Selvaratnam, S., Kirley, M., 2006. Predicting Stock Market Time Series Using Evolutionary Artificial Neural Networks with Hurst Exponent Input Windows[C]. Advances in Artificial Intelligence, pp.617-626.
  17. Xi-Tao, W., 2006. Study on the Application of ARIMA Model in Time-Bargain Forecast[J]. E-Commerce and Logistics, 22(15)139-140H.
  18. White, H., Granger, C.W.J., 2011. Consideration of Trends in Time Series, Journal of Time Series Econometrics, (3)1,2.
  19. Xylogiannopoulos, K., Karampelas, P., Alhajj, R., 2012. Periodicity Data Mining in Time Series Using Suffix Arrays, in Proc. IEEE Intelligent Systems IS'12.
  20. Xylogiannopoulos, K., Karampelas, P., Alhajj, R., 2014. Exhaustive Patterns Detection In Time Series Using Suffix Arrays. , manuscript in submission.
  21. Xylogiannopoulos, K., Karampelas, P., Alhajj, R., 2014. Analyzing Very Large Time Series Using Suffix Arrays, Applied Intelligence, (41)3, pp. 941-955.
  22. Xylogiannopoulos, K., Karampelas, P., Alhajj, R., 2014. Experimental Analysis on the Normality of pi, e, phi and square root of 2 Using Advanced Data Mining Techniques. Experimental Mathematics, (23)2.
  23. Yang, Y., Webb, G., Wu, X., 2005. Data Mining and Knowledge Discovery Handbook, Chapter 6. Springer.
Download


Paper Citation


in Harvard Style

Xylogiannopoulos K., Karampelas P. and Alhajj R. (2015). Discretization Method for the Detection of Local Extrema and Trends in Non-discrete Time Series . In Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-096-3, pages 346-352. DOI: 10.5220/0005401203460352


in Bibtex Style

@conference{iceis15,
author={Konstantinos F. Xylogiannopoulos and Panagiotis Karampelas and Reda Alhajj},
title={Discretization Method for the Detection of Local Extrema and Trends in Non-discrete Time Series},
booktitle={Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2015},
pages={346-352},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005401203460352},
isbn={978-989-758-096-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Discretization Method for the Detection of Local Extrema and Trends in Non-discrete Time Series
SN - 978-989-758-096-3
AU - Xylogiannopoulos K.
AU - Karampelas P.
AU - Alhajj R.
PY - 2015
SP - 346
EP - 352
DO - 10.5220/0005401203460352