Integrating Explicit Knowledge in the Visual Analytics Process - Knowledge-assisted Visual Analytics Methods for Time-oriented Data

Markus Wagner


In this paper, I describe my thesis project for the integration of explicit knowledge from domain experts into the visual analytics process. As base for the implementation of the research project, I will follow the nested model for visualization design and validation. Additionally, I use a problem-driven approach to study knowledge-assisted visualization systems for time-oriented data in the context of real world problems. At first, my research will focus on the ITsecurity domain where I analyze the needs of malware analysts to support them during their work. Therefore I have currently prepared a problem characterization and abstraction to understand the needs of the domain experts to gain more insight into their workflow. Based on that findings, I am currently working on the design and the implementation of a prototype. Next, I will evaluate these visual analytics methods and finally I will test the generalizability of the knowledgeassisted visual analytics methods in a second domain.


  1. Aigner, W., Miksch, S., Schumann, H., and Tominski, C. (2011). Visualization of Time-Oriented Data. Springer, London.
  2. Andrienko, N. and Andrienko, G. (2005). Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Springer, Berlin, New York.
  3. Becker, R. A. and Cleveland, W. S. (1987). Brushing scatterplots. Technometrics, 29(2):127-142.
  4. Bertin, J. (1983). Semiology of Graphics. University of Wisconsin Press.
  5. Cammarano, M., Dong, X., Chan, B., Klingner, J., Talbot, J., Halevy, A., and Hanrahan, P. (2007). Visualization of heterogeneous data. TVCG, 13(6):1200-1207.
  6. Card, S. and Card, M. (1999). Readings in Information Visualisation. Using Vision to Think.: Using Vision to Think. Morgan Kaufman Publ Inc, San Francisco, Calif.
  7. Chen, C. (2005). Top 10 unsolved information visualization problems. CG&A, 25(4):12-16.
  8. Chen, M., Ebert, D., Hagen, H., Laramee, R., Van Liere, R., Ma, K.-L., Ribarsky, W., Scheuermann, G., and Silver, D. (2009). Data, information, and knowledge in visualization. CG&A, 29(1):12-19.
  9. Chen, M. and Hagen, H. (2010). Guest editors' introduction: Knowledge-assisted visualization. CG&A, 30(1):15-16.
  10. Chi, E. H.-H. and Riedl, J. (1998). An operator interaction framework for visualization systems. In IEEE Symposium on Information Visualization, 1998. Proceedings, pages 63-70.
  11. Combi, C., Keravnou-Papailiou, E., and Shahar, Y. (2010). Temporal Information Systems in Medicine. Springer, New York.
  12. Cooper, A., Reimann, R., and Cronin, D. (2007). About Face 3: The Essentials of Interaction Design. Wiley, Indianapolis, IN, 3rd edition.
  13. Dornhackl, H., Kadletz, K., Luh, R., and Tavolato, P. (2014). Malicious behavior patterns. In IEEE 8th International Symposium on Service Oriented System Engineering, pages 384-389.
  14. Falconer, S., Bull, R., Grammel, L., and Storey, M. (2009). Creating visualizations through ontology mapping. In CISIS, pages 688-693.
  15. Fischer, F., Mansmann, F., and Keim, D. A. (2012). Realtime visual analytics for event data streams. In Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC 7812, pages 801-806. ACM.
  16. Gilson, O., Silva, N., Grant, P., and Chen, M. (2008). From web data to visualization via ontology mapping. Computer Graphics Forum, 27(3):959-966.
  17. Jouault, F. and Kurtev, I. (2006). Transforming models with ATL. In Bruel, J.-M., editor, Satellite Events at the MoDELS 2005 Conference, number 3844 in Lecture Notes in Computer Science, pages 128-138. Springer Berlin Heidelberg.
  18. Kadlec, B., Tufo, H., and Dorn, G. (2010). Knowledgeassisted visualization and segmentation of geologic features. CG&A, 30(1):30-39.
  19. Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F., editors (2010). Mastering the information age: solving problems with visual analytics. Eurographics Association, Goslar.
  20. Kielman, J., Thomas, J., and May, R. (2009). Foundations and frontiers in visual analytics. Information Visualization, 8(4):239-246.
  21. Kulyk, O., Kosara, R., Urquiza, J., and Wassink, I. (2007). Human-centered aspects. In Kerren, A., Ebert, A., and Meyer, J., editors, Human-Centered Visualization Environments, number 4417 in Lecture Notes in Computer Science, pages 13-75. Springer, Berlin.
  22. Lammarsch, T., Aigner, W., Bertone, A., Gartner, J., Mayr, E., Miksch, S., and Smuc, M. (2009). Hierarchical temporal patterns and interactive aggregated views for pixel-based visualizations. In Information Visualisation, 2009 13th International Conference, pages 44- 50.
  23. Lazar, J., Feng, J. H., and Hochheiser, H. (2010). Research Methods in Human-Computer Interaction. Wiley, Chichester, West Sussex, U.K, 1 edition.
  24. Mackinlay, J. (1986). Automating the design of graphical presentations of relational information. ACM Trans. Graph., 5(2):110-141.
  25. Mackinlay, J., Hanrahan, P., and Stolte, C. (2007). Show me: Automatic presentation for visual analysis. TVCG, 13(6):1137-1144.
  26. Miksch, S. and Aigner, W. (2014). A matter of time: Applying a data-users-tasks design triangle to visual analytics of time-oriented data. Computers & Graphics, Special Section on Visual Analytics, 38:286-290.
  27. Mistelbauer, G., Bouzari, H., Schernthaner, R., Baclija, I., Kochl, A., Bruckner, S., Sramek, M., and Groller, M. (2012). Smart super views: A knowledge-assisted interface for medical visualization. In VAST, pages 163- 172.
  28. Munzner, T. (2009). A nested model for visualization design and validation. TVCG, 15(6):921-928.
  29. Nam, J. E., Maurer, M., and Mueller, K. (2009). A high-dimensional feature clustering approach to support knowledge-assisted visualization. Computers & Graphics, 33(5):607-615.
  30. Perlin, K. and Fox, D. (1993). Pad: An alternative approach to the computer interface. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7893, pages 57-64, New York. ACM.
  31. Pike, W. A., Stasko, J., Chang, R., and O'Connell, T. A. (2009). The science of interaction. Information Visualization, 8(4):263-274.
  32. Rind, A., Aigner, W., Miksch, S., Wiltner, S., Pohl, M., Turic, T., and Drexler, F. (2011). Visual exploration of time-oriented patient data for chronic diseases: Design study and evaluation. In Holzinger, A. and Simonic, K.-M., editors, Information Quality in e-Health, number 7058 in LNCS, pages 301-320. Springer, Berlin.
  33. Saxe, J., Mentis, D., and Greamo, C. (2012). Visualization of shared system call sequence relationships in large malware corpora. In International Workshop on Visualization for Cyber Security, VizSec 7812, pages 33-40. ACM.
  34. Sedlmair, M., Meyer, M., and Munzner, T. (2012). Design study methodology: Reflections from the trenches and the stacks. TVCG, 18(12):2431-2440.
  35. Sharp, H., Rogers, Y., and Preece, J. (2007). Interaction Design: Beyond Human-Computer Interaction. John Wiley & Sons, Chichester ; Hoboken, NJ, 2. edition.
  36. Shneiderman, B. (1996). The eyes have it: a task by data type taxonomy for information visualizations. In IEEE Symposium on Visual Languages. Proceedings, pages 336-343.
  37. Spence, R. (2006). Information Visualization: Design for Interaction. Prentice Hall, New York, 2nd rev. edition.
  38. Thomas, J. J. and Cook, K. A. (2005). Illuminating the Path: The Research and Development Agenda for Visual Analytics. National Visualization and Analytics Ctr. Published: Paperback.
  39. Tominski, C. (2011). Event-based concepts for user-driven visualization. Information Visualization, 10(1):65-81.
  40. Wagner, M., Aigner, W., Rind, A., Dornhackl, H., Kadletz, K., Luh, R., and Tavolato, P. (2014). Problem characterization and abstraction for visual analytics in behavior-based malware pattern analysis. In International Workshop on Visualization for Cyber Security. ACM.
  41. Wang, T. D., Plaisant, C., Quinn, A. J., Stanchak, R., Murphy, S., and Shneiderman, B. (2008). Aligning temporal data by sentinel events: Discovering patterns in electronic health records. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 7808, pages 457-466, New York. ACM.
  42. Wang, X., Jeong, D. H., Dou, W., Lee, S.-W., Ribarsky, W., and Chang, R. (2009). Defining and applying knowledge conversion processes to a visual analytics system. Computers & Graphics, 33(5):616-623.
  43. Wegner, P. (1997). Why interaction is more powerful than algorithms. Commun. ACM, 40(5):80-91.
  44. Wills, G. and Wilkinson, L. (2010). AutoVis: Automatic visualization. Information Visualization, 9(1):47-69.

Paper Citation

in Harvard Style

Wagner M. (2015). Integrating Explicit Knowledge in the Visual Analytics Process - Knowledge-assisted Visual Analytics Methods for Time-oriented Data . In Doctoral Consortium - DCVISIGRAPP, (VISIGRAPP 2015) ISBN , pages 9-18

in Bibtex Style

author={Markus Wagner},
title={Integrating Explicit Knowledge in the Visual Analytics Process - Knowledge-assisted Visual Analytics Methods for Time-oriented Data},
booktitle={Doctoral Consortium - DCVISIGRAPP, (VISIGRAPP 2015)},

in EndNote Style

JO - Doctoral Consortium - DCVISIGRAPP, (VISIGRAPP 2015)
TI - Integrating Explicit Knowledge in the Visual Analytics Process - Knowledge-assisted Visual Analytics Methods for Time-oriented Data
SN -
AU - Wagner M.
PY - 2015
SP - 9
EP - 18
DO -