Time-aware Link Prediction in RDF Graphs

Jaroslav Kuchař, Milan Dojchinovski, Tomas Vitvar

Abstract

When a link is not explicitly present in an RDF dataset, it does not mean that the link could not exist in reality. Link prediction methods try to overcome this problem by finding new links in the dataset with support of a background knowledge about the already existing links in the dataset. In dynamic environments that change often and evolve over time, link prediction methods should also take into account the temporal aspects of data. In this paper, we present a novel time-aware link prediction method. We model RDF data as a tensor and take into account the time when RDF data was created. We use an ageing function to model a retention of the information over the time; lower the significance of the older information and promote more recent. Our evaluation shows that the proposed method improves quality of predictions when compared with methods that do not consider the time information.

References

  1. Acar, E., Dunlavy, D. M., and Kolda, T. G. (2009). Link prediction on evolving data using matrix and tensor factorizations. In Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, ICDMW 7809, pages 262-269, Washington, DC, USA. IEEE Computer Society.
  2. Bizer, C., Volz, J., Kobilarov, G., and Gaedke, M. (2009). Silk - a link discovery framework for the web of data. In 18th International World Wide Web Conference.
  3. Dunlavy, D. M., Kolda, T. G., and Acar, E. (2011). Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data, 5(2):10:1- 10:27.
  4. Ebbinghaus, H. (1913). Memory: A contribution to experimental psychology. Number 3. Teachers college, Columbia university.
  5. Ermis, B., Acar, E., and Cemgil, A. T. (2012). Link prediction via generalized coupled tensor factorisation. CoRR, abs/1208.6231.
  6. Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. (1999). Learning probabilistic relational models. In In IJCAI, pages 1300-1309. Springer-Verlag.
  7. Gao, S., Denoyer, L., and Gallinari, P. (2012). Probabilistic latent tensor factorization model for link pattern prediction in multi-relational networks. CoRR, abs/1204.2588.
  8. Gutirrez-Basulto, V. and Klarman, S. (2012). Towards a unifying approach to representing and querying temporal data in description logics. In Krtzsch, M. and Straccia, U., editors, Web Reasoning and Rule Systems, volume 7497 of Lecture Notes in Computer Science, pages 90-105. Springer Berlin Heidelberg.
  9. Khosravi, H. and Bina, B. (2010). A survey on statistical relational learning. In Proceedings of the 23rd Canadian conference on Advances in Artificial Intelligence, AI'10, pages 256-268, Berlin, Heidelberg. SpringerVerlag.
  10. Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM Rev., 51(3):455-500.
  11. Kopecky, J., Vitvar, T., Bournez, C., and Farrell, J. (2007). Sawsdl: Semantic annotations for wsdl and xml schema. Internet Computing, IEEE, 11(6):60 -67.
  12. Li, D., Xu, Z., Li, S., and Sun, X. (2013). Link prediction in social networks based on hypergraph. In Proceedings of the 22Nd International Conference on World Wide Web Companion, WWW 7813 Companion, pages 41-42, Republic and Canton of Geneva, Switzerland. International World Wide Web Conferences Steering Committee.
  13. London, B., Rekatsinas, T., Huang, B., and Getoor, L. (2013). Multi-relational learning using weighted tensor decomposition with modular loss. CoRR, abs/1303.1733.
  14. Ngomo, A.-C. N. and Auer, S. (2011). Limes: A timeefficient approach for large-scale link discovery on the web of data. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume Three, IJCAI'11, pages 2312-2317. AAAI Press.
  15. Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A threeway model for collective learning on multi-relational data. In Getoor, L. and Scheffer, T., editors, Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML 7811, pages 809-816, New York, NY, USA. ACM.
  16. Nickel, M., Tresp, V., and Kriegel, H.-P. (2012). Factorizing yago: scalable machine learning for linked data. In Proceedings of the 21st international conference on World Wide Web, WWW 7812, pages 271-280, New York, NY, USA. ACM.
  17. Oyama, S., Hayashi, K., and Kashima, H. (2011). Crosstemporal link prediction. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining, ICDM 7811, pages 1188-1193, Washington, DC, USA. IEEE Computer Society.
  18. Raymond, R. and Kashima, H. (2010). Fast and scalable algorithms for semi-supervised link prediction on static and dynamic graphs. In Balczar, J., Bonchi, F., Gionis, A., and Sebag, M., editors, Machine Learning and Knowledge Discovery in Databases, volume 6323 of Lecture Notes in Computer Science, pages 131-147. Springer Berlin Heidelberg.
  19. Rula, A., Palmonari, M., Harth, A., Stadtmller, S., and Maurino, A. (2012). On the diversity and availability of temporal information in linked open data. In Cudr-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J., Hendler, J., Schreiber, G., Bernstein, A., and Blomqvist, E., editors, The Semantic Web ISWC 2012, volume 7649 of Lecture Notes in Computer Science, pages 492-507. Springer Berlin Heidelberg.
  20. Spiegel, S., Clausen, J., Albayrak, S., and Kunegis, J. (2012). Link prediction on evolving data using tensor factorization. In Proceedings of the 15th international conference on New Frontiers in Applied Data Mining, PAKDD'11, pages 100-110, Berlin, Heidelberg. Springer-Verlag.
  21. Symeonidis, P. and Perentis, C. (2014). Link prediction in multi-modal social networks. In Calders, T., Esposito, F., Hllermeier, E., and Meo, R., editors, Machine Learning and Knowledge Discovery in Databases, volume 8726 of Lecture Notes in Computer Science, pages 147-162. Springer Berlin Heidelberg.
  22. Taskar, B., fai Wong, M., Abbeel, P., and Koller, D. (2003). Link prediction in relational data. In in Neural Information Processing Systems.
  23. Vitvar, T., KopeckÉ, J., Viskova, J., and Fensel, D. (2008). WSMO-Lite Annotations for Web Services. In ESWC, pages 674-689.
Download


Paper Citation


in Harvard Style

Kuchař J., Dojchinovski M. and Vitvar T. (2015). Time-aware Link Prediction in RDF Graphs . In Proceedings of the 11th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-758-106-9, pages 390-401. DOI: 10.5220/0005428403900401


in Bibtex Style

@conference{webist15,
author={Jaroslav Kuchař and Milan Dojchinovski and Tomas Vitvar},
title={Time-aware Link Prediction in RDF Graphs},
booktitle={Proceedings of the 11th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2015},
pages={390-401},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005428403900401},
isbn={978-989-758-106-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - Time-aware Link Prediction in RDF Graphs
SN - 978-989-758-106-9
AU - Kuchař J.
AU - Dojchinovski M.
AU - Vitvar T.
PY - 2015
SP - 390
EP - 401
DO - 10.5220/0005428403900401