Novel Progress in the High-sensitivity Heterolithic Ring Laser Gyroscope Technology

R. Santagata, J. Jacopo, N. Beverini, G. Carelli, A. Di Virgilio, E. Maccioni, A. Simonelli


The sensitivity achieved by large ring laser gyroscopes opens the perspective to observe in an Earth-located laboratory extremely small effects expected from fundamental theories of physics. The next-generation sensor that could provide the required accuracy is a multiaxial heterolithic ring laser actively stabilized via a precise external diagnostic of circulating laser beams path. Here we report about the research activities and recent progress toward the development of a large frame He-Ne triaxial sensor with an ultimate accuracy of 10^{-11}, in order to detect the relativistic Lense-Thirring effect related to the Earth rotating mass. The actual activity is focused on the control of the systematic errors related to the fluctuation of the cavity geometry and the laser active medium parameters. In this work we will discuss in details only the first issue, to which my PhD studies are mainly dedicated.


  1. Beghi A. et al. (2012). Compensation of the laser parameter fluctuations in large ring-laser gyros: a Kalman filter approach. Appl. Opt. 51, 7518-7528.
  2. Belfi J. et al. (2012). A 1.82 m2 ring laser gyroscope for nano-rotational motion sensing. Appl. Phys. B 106, 271-281.
  3. Belfi J. et al. (2014). Interferometric length metrology for the dimensional control of ultra-stable ring laser gyroscopes. Class. Quant. Grav. 31, 225003.
  4. Bosi F. et al. (2011). Measuring Gravito-Magnetic Effects by Multi Ring-Laser Gyroscope. Phys. Rev. D 84, 1220022.
  5. Ciufolini I. (1986). Measurement of the Lense-Thirring drag effect on LAGEOS and another high altitude laser ranging satellite. Phys. Rev. Lett. 56, 278-281.
  6. Cuccato D. et al. (2014). Controlling the non-linear intracavity dynamics of large He-Ne laser gyroscopes. Metrologia, 51, 97-107.
  7. Di Virgilio A. et al. (2014). A ring lasers array for fundamental physics. Compt. rend. Phys. 15, 866-874.
  8. Everitt C.W.F. et al. (2011). Gravity Probe B: Final Results of a Space Experiment to test General Relativity. Phys. Rev. Lett. 106, 221101.
  9. Lense J. and Thirring H. (1918). Uber den Einfluss der Eigenrotation der Zentralkorper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitations theorie. Phys. Z. 19, 156-163.
  10. Sagnac G. (1913). L'ether lumineux demontre par l'effet du vent relatif d'ether dans un interferometre en rotation uniforme. Comp. Rend. 157, 708.
  11. Santagata R. et al. (2014). Optimization of the geometrical stability in square ring laser gyroscopes. arXiv:1411.2585.
  12. Schreiber K.U. et al. (2009). The Large Ring Laser G for Continuous Earth Rotation Monitoring. Journal of Pure and Applied Geophysics, 166 1485.
  13. Schreiber K.U. et al. (2011). How to Detect the Chandler and the Annual Wobble of the Earth with a Large Ring Laser Gyroscope. Phys. Rev. Lett. 107, 173904.
  14. Stedman G.E. (1997). Ring-laser tests of fundamental physics and geophysics. Rep. Prog. Phys. 60, 615- 688.

Paper Citation

in Harvard Style

Santagata R., Jacopo J., Beverini N., Carelli G., Di Virgilio A., Maccioni E. and Simonelli A. (2015). Novel Progress in the High-sensitivity Heterolithic Ring Laser Gyroscope Technology . In Doctoral Consortium - DCPHOTOPTICS, (PHOTOPTICS 2015) ISBN , pages 10-18

in Bibtex Style

author={R. Santagata and J. Jacopo and N. Beverini and G. Carelli and A. Di Virgilio and E. Maccioni and A. Simonelli},
title={Novel Progress in the High-sensitivity Heterolithic Ring Laser Gyroscope Technology},
booktitle={Doctoral Consortium - DCPHOTOPTICS, (PHOTOPTICS 2015)},

in EndNote Style

JO - Doctoral Consortium - DCPHOTOPTICS, (PHOTOPTICS 2015)
TI - Novel Progress in the High-sensitivity Heterolithic Ring Laser Gyroscope Technology
SN -
AU - Santagata R.
AU - Jacopo J.
AU - Beverini N.
AU - Carelli G.
AU - Di Virgilio A.
AU - Maccioni E.
AU - Simonelli A.
PY - 2015
SP - 10
EP - 18
DO -