CoMA: Resource Monitoring of Docker Containers

Lara Lorna Jiménez, Miguel Gómez Simón, Olov Schelén, Johan Kristiansson, Kåre Synnes, Christer Åhlund


This research paper presents CoMA, a Container Monitoring Agent, that oversees resource consumption of operating system level virtualization platforms, primarily targeting container-based platforms such as Docker. The core contribution is CoMA, together with a quantitative evaluation verifying the validity of the measurements reported by the agent for three metrics: CPU, memory and block I/O. The proof-of-concept is implemented for Docker-based systems and consists of CoMA, the Ganglia Monitoring System and the Host sFlow agent. This research is in line with the rising trend of container adoption which is due to the resource efficiency and ease of deployment. These characteristics have set containers in a position to topple virtual machines as the reigning virtualization technology in data centers.


  1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. (2003). Xen and the art of virtualization. SIGOPS Oper. Syst. Rev., 37(5):164-177.
  2. Bryan Lee (Accessed: 2014). cAdvisor monitoring tool.
  3. Datadog Inc (Accessed: 2014). Docker-ize Datadog with agent containers . 06/docker-ize-datadog/.
  4. Docker Inc (2013). What is Docker technology ? https://
  5. Docker Inc (Accessed: 2014a). Docker remote API. https:// docs. reference/api/docker remote api/.
  6. Docker Inc (Accessed: 2014b). Docker working with LXC.
  7. Docker Inc (Accessed: 2014c). File sytem architecture of the Docker platform . layer/.
  8. Docker Inc (Accessed 2014d). Volume system with Docker.
  9. Elena Reshetova, Janne Karhunen, T. N. N. A. (2014). Security of os-level virtualization technologies.
  10. Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2014). An updated performance comparison of virtual machines and linux containers. technology, 28:32.
  11. Google Inc (Accessed: 2014). lmctfy: Let Me Contain That For You .
  12. InMon Inc (Accessed: 2014). HostsFlow monitoring tool .
  13. Kutare, M., Eisenhauer, G., Wang, C., Schwan, K., Talwar, V., and Wolf, M. (2010). Monalytics: Online monitoring and analytics for managing large scale data centers. In Proceedings of the 7th International Conference on Autonomic Computing, ICAC 7810, pages 141- 150, New York, NY, USA. ACM.
  14. Massie, M., Li, B., Nicholes, B., Vuksan, V., Alexander, R., Buchbinder, J., Costa, F., Dean, A., Josephsen, D., Phaal, P., and Pocock, D. (2012). Monitoring with Ganglia. O'Reilly Media, Inc., 1st edition.
  15. Meng, S., Iyengar, A. K., Rouvellou, I. M., Liu, L., Lee, K., Palanisamy, B., and Tang, Y. (2012). Reliable state monitoring in cloud datacenters. In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, CLOUD 7812, pages 951-958, Washington, DC, USA. IEEE Computer Society.
  16. Paul Menage (Accessed: 2014). Control Groups (cgroups) Documentation . Documentation/cgroups/cgroups.txt. Available since: 2004.
  17. Ranjan, R., B. R. L. P. H. A. and Tai, S. (2014). A note on software tools and techniques for monitoring and prediction of cloud services softw: Pract. exper., 44: 771-775.
  18. Tafa, I., Beqiri, E., Paci, H., Kajo, E., and Xhuvani, A. (2011). The evaluation of transfer time, cpu consumption and memory utilization in xen-pv, xen-hvm, openvz, kvm-fv and kvm-pv hypervisors using ftp and http approaches. In Intelligent Networking and Collaborative Systems (INCoS), 2011 Third International Conference on, pages 502-507.
  19. VMware Inc (2007a). Understanding Full Virtualization, Paravirtualization and Hardware Assist. VMware paravirtualization.pdf. Accessed: 2014 (white paper).
  20. VMware Inc (2007b). Virtualization Overview. http:// pdf/ virtualization.pdf. Accessed: 2014 (white paper).
  21. Xavier, M., Neves, M., Rossi, F., Ferreto, T., Lange, T., and De Rose, C. (2013). Performance evaluation of container-based virtualization for high performance computing environments. In Parallel, Distributed and Network-Based Processing (PDP), 2013 21st Euromicro International Conference on, pages 233-240.
  22. Xu, F., Liu, F., Jin, H., and Vasilakos, A. (2014). Managing performance overhead of virtual machines in cloud computing: A survey, state of the art, and future directions. Proceedings of the IEEE, 102(1):11-31.
  23. Ye, K., Huang, D., Jiang, X., Chen, H., and Wu, S. (2010). Virtual machine based energy-efficient data center architecture for cloud computing: A performance perspective. IEEE-ACM International Conference on Green Computing and Communications and International Conference on Cyber, Physical and Social Computing, 0:171-178.

Paper Citation

in Harvard Style

Jiménez L., Gómez Simón M., Schelén O., Kristiansson J., Synnes K. and Åhlund C. (2015). CoMA: Resource Monitoring of Docker Containers . In Proceedings of the 5th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER, ISBN 978-989-758-104-5, pages 145-154. DOI: 10.5220/0005448001450154

in Bibtex Style

author={Lara Lorna Jiménez and Miguel Gómez Simón and Olov Schelén and Johan Kristiansson and Kåre Synnes and Christer Åhlund},
title={CoMA: Resource Monitoring of Docker Containers},
booktitle={Proceedings of the 5th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,},

in EndNote Style

JO - Proceedings of the 5th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,
TI - CoMA: Resource Monitoring of Docker Containers
SN - 978-989-758-104-5
AU - Jiménez L.
AU - Gómez Simón M.
AU - Schelén O.
AU - Kristiansson J.
AU - Synnes K.
AU - Åhlund C.
PY - 2015
SP - 145
EP - 154
DO - 10.5220/0005448001450154