Enhanced LZMA and BZIP2 for Improved Energy Data Compression

Zaid Bin Tariq, Naveed Arshad, Muhammad Nabeel


Smart grid is the next generation of electricity production, transmission and distribution system. This is possible through an overlayed communication layer with the power delivery layer. Due to this communication layer smart grids produce enormous amounts of data. This data may be analyzed for improving the quality of service of smart grids. However, handling such enormous amount of data is a challenge. LZMA and BZIP2 are two industrial strength compression techniques. In this paper we present an enhanced version of these two schemes specifically targeted to smart grid data through a pre-processing step. Our results show that while the original LZMA is able to compress the data size to around 80% our enhanced scheme using the preprocessing is able to reduce the size of the smart grid data to 98% on average.


  1. Tcheou, M. P. ,Lovisolo, L. ; Ribeiro, M. V. ; da Silva, E. A. B. ; Rodrigues, M. A. M. ; Romano, J. M. T. ; Diniz, P. S. R (2014).The Compression of Electric Signal Waveforms for Smart Grids: State of the Art and Future Trends. Smart Grid, IEEE Transactions on (Volume:5, Issue: 1 ) ,pp 291-302, 10.1109/TSG.2013.2293957.
  2. Kraus, Jan,Tobiska, Tomas ; Bubla, Viktor (2009) Loooseless encodings and compression algorithms applied on power quality datasets. Int conference on Elec Dist, Prague, Czech Republic.
  3. I. Y.-H. Gu and E. Styvaktakis (2003). Bridge the gap: Signal processing for power quality applications. Elect. Power Syst. Res., vol. 66, no. 1, pp.
  4. M. V. Ribeiro, J. Szczupak, M. R. Iravani, I. Y.-H. Gu, P. K. Dash, and A. V. Mamishev (2007). Emerging signal processing techniques for power quality applications EURASIP J. Adv. Signal Process., vol. no 2, pp. 16-16, June2007 [Online]. Available: http://dx.doi.org/10.1155/2007/87425.
  5. M. H. J. Bollen, I. Y.-H. Gu, S. Santoso, M. F. Mcgranaghan, P. A.Crossley, M. V. Ribeiro, and P. F. Ribeiro (2009). Bridging the gap between signal and power. IEEE Signal Process. Mag., vol. 26, no. 4, pp.12-31.
  6. M. H. J. Bollen, P. F. Ribeiro, I. Y.-H. Gu, and C. A. Duque (2009) .Trends, challenges and opportunities in power quality research. Eur. Trans.Electr. Power, vol. 4, no. 1, pp. 2-18.
  7. Smart grid. U.S. Department of Energy (2011). [Online].Available:http://www.oe.energy.gov/smartgri d.htm.
  8. S. M. Amin and B. Wollenberg (2005). Toward a smart grid: Power delivery for the 21st century. IEEE Power Energy Mag., vol. 3, no. 5, pp.34-41.
  9. K. Vu, M. M. Begouic, and D. Novosel (1997).Grids get smart protection and control. IEEE Comput. Apps. Power, vol. 10, no. 4, pp. 40-44.
  10. A. Vojdani (2008). Smart integration. IEEE Power Energy Mag., vol. 6, no. 6, pp. 71-79.
  11. A. Ipakchi and F. Albuyeh (2009). Grid of the future. IEEE Power Energy Mag., vol. 7, no. 2, pp. 52-62.
  12. EPRI (2011). Smart grid demonstration-integration of distributedenergyresources.[Online].Available:http://w ww.smartgrid.epri.com/Demo.aspx.
  13. M. Nabeel, F. Javed, N. Arshad (2013). Towards Smart Data Compression for Future Energy Management System. Fifth International Conference on Applied Energy, Pretoria, South Africa, 1-4.
  14. O. N. Gerek and D. G. Ece (2008). Compression of power quality event data using 2d representation. Elect. Power Syst. Res., vol. 78, no. 6, pp.1047-1052.
  15. "Bzip2 and Libbzip2, Version 1.0.5." Bzip2. N.p., n.d. Web. 20 Nov. 2014. http://www.bzip.org/
  16. E. Michael Azoff (1994). Neural network time series forecasting of financial markets. John Wiley & Sons, Inc.
  17. J. Zico Kolter, Matthew J. Johnson (2011). REDD: A Public Data Set for Energy Disaggregation Research. In proceedings of the SustKDD workshop on Data Mining Applications in Sustainability.
  18. LZMA SDK (Software Development Kit). LZMA SDK (Software Development Kit). 2014.
  19. Moffat, A. (1990). Implementing the PPM Data Compression Scheme. IEEE Transactions on Communications 38.11: 1917-921. Web http:// www.7-zip.org/sdk.html.
  20. G. V Cormack, R. N. S. Horspool (1987). Data Compression Using Dynamic Markov Modelling. The Computer Journal, 30(6): 550.

Paper Citation

in Harvard Style

Bin Tariq Z., Arshad N. and Nabeel M. (2015). Enhanced LZMA and BZIP2 for Improved Energy Data Compression . In Proceedings of the 4th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS, ISBN 978-989-758-105-2, pages 256-263. DOI: 10.5220/0005454202560263

in Bibtex Style

author={Zaid Bin Tariq and Naveed Arshad and Muhammad Nabeel},
title={Enhanced LZMA and BZIP2 for Improved Energy Data Compression},
booktitle={Proceedings of the 4th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,},

in EndNote Style

JO - Proceedings of the 4th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,
TI - Enhanced LZMA and BZIP2 for Improved Energy Data Compression
SN - 978-989-758-105-2
AU - Bin Tariq Z.
AU - Arshad N.
AU - Nabeel M.
PY - 2015
SP - 256
EP - 263
DO - 10.5220/0005454202560263