Maritime Targets Detection from Ground Cameras Exploiting Semi-supervised Machine Learning

Eftychios Protopapadakis, Konstantinos Makantasis, Nikolaos Doulamis

Abstract

This paper presents a vision-based system for maritime surveillance, using moving PTZ cameras. The proposed methodology fuses a visual attention method that exploits low-level image features appropriately selected for maritime environment, with appropriate tracker. Such features require no assumptions about environmental nor visual conditions. The offline initialization is based on large graph semi-supervised technique in order to minimize user’s effort. System’s performance was evaluated with videos from cameras placed at Limassol port and Venetian port of Chania. Results suggest high detection ability, despite dynamically changing visual conditions and different kinds of vessels, all in real time.

References

  1. Achanta, R., Hemami, S., Estrada, F., and Susstrunk, S. (2009). Frequency-tuned salient region detection. In IEEE Conf. on Comp. Vis. and Pat. Rec., 2009. CVPR 2009, pages 1597-1604.
  2. Albrecht, T., Tan, T., West, G., Ly, T., and Moncrieff, S. (2011a). Vision-based attention in maritime environments. In Communications and Signal Processing (ICICS) 2011 8th Int. Conf. on Information,pages 1-5.
  3. Albrecht, T., West, G., Tan, T., and Ly, T. (2010). Multiple views tracking of maritime targets. In 2010 Int. Conf. on Digital Image Computing: Techniques and Applications (DICTA), pages 302-307.
  4. Albrecht, T., West, G., Tan, T., and Ly, T. (2011b). Visual maritime attention using multiple low-level features and na #x0ef;ve bayes classification. In 2011 Int. Conf. on Digital Image Computing Techniques and Applications (DICTA), pages 243-249.
  5. Alexe, B., Deselaers, T., and Ferrari, V. (2010). What is an object? In 2010 IEEE Conf. on Comp. Vis. and Pat. Rec. (CVPR), pages 73-80.
  6. Auslander, B., Gupta, K. M., and Aha, D. W. (2011). A comparative evaluation of anomaly detection algorithms for maritime video surveillance. volume 8019, pages 801907-801907-14.
  7. Belkin, M. and Niyogi, P. (2002). Using manifold structure for partially labelled classification. page 929.
  8. Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273-297.
  9. Doulamis, N. and Doulamis, A. (2012). Fast and adaptive deep fusion learning for detecting visual objects. In Fusiello, A., Murino, V., and Cucchiara, R., editors, Comp. Vis. ECCV 2012. Workshops and Demonstrations, number 7585 in Lecture Notes in Computer Science, pages 345-354. Springer Berlin Heidelberg.
  10. Fischer, Y. and Bauer, A. (2010). Object-oriented sensor data fusion for wide maritime surveillance. In Waterside Security Conf. (WSS), 2010 Int., pages 1-6.
  11. Kaimakis, P. and Tsapatsoulis, N. (2013). Background modeling methods for visual detection of maritime targets. In Proceedings of the 4th ACM/IEEE Int. Workshop on Anal. and Retrieval of Tracked Events and Motion in Imagery Stream, ARTEMIS 7813, pages 67-76, New York, NY, USA. ACM.
  12. Lei, P.-R. (2013). Exploring trajectory behavior model for anomaly detection in maritime moving objects. In 2013 IEEE Int. Conf. on Intelligence and Security Informatics (ISI), pages 271-271.
  13. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., and Shum, H.-Y. (2011). Learning to detect a salient object. IEEE Trans. on Pat. Anal. and Machine Intelligence, 33(2):353-367.
  14. Liu, W., He, J., and Chang, S.-F. (2010). Large graph construction for scalable semi-supervised learning. In Proceedings of the 27th Int. Conf. on Machine Learning (ICML-10), pages 679-686.
  15. Makantasis, K., Doulamis, A., and Doulamis, N. (2013). Vision-based maritime surveillance system using fused visual attention maps and online adaptable tracker. In 2013 14th Int. Workshop on Image Anal. for Multimedia Interactive Services (WIAMIS),pages 1-4.
  16. Makantasis, K., Doulamis, A., and Matsatsinis, N. (2012). Student-t background modeling for persons' fall detection through visual cues. In 2012 13th Int. Workshop on Image Anal. for Multimedia Interactive Services (WIAMIS), pages 1-4.
  17. Maresca, S., Greco, M., Gini, F., Grasso, R., Coraluppi, S., and Horstmann, J. (2010). Vessel detection and classification: An integrated maritime surveillance system in the tyrrhenian sea. In 2010 2nd Int. Workshop on Cognitive Information Processing (CIP),pages 40-45.
  18. McIlhagga, W. (2011). The canny edge detector revisited. Int. Journal of Comp. Vis., 91(3):251-261.
  19. Nadler, B., Srebro, N., and Zhou, X. (2009). Statistical analysis of semi-supervised learning: The limit of infinite unlabelled data. In Bengio, Y., Schuurmans, D., Lafferty, J. D., Williams, C. K. I., and Culotta, A., editors, Advances in Neural Information Processing Systems 22, pages 1330-1338. Curran Associates, Inc.
  20. Nilsson, M., van Laere, J., Ziemke, T., and Edlund, J. (2008). Extracting rules from expert operators to support situation awareness in maritime surveillance. In 2008 11th Int. Conf. on Information Fusion,pages 1-8.
  21. Rodriguez Sullivan, M. D. and Shah, M. (2008). Visual surveillance in maritime port facilities. volume 6978, pages 697811-697811-8.
  22. Socek, D., Culibrk, D., Marques, O., Kalva, H., and Furht, B. (2005). A hybrid color-based foreground object detection method for automated marine surveillance. In Blanc-Talon, J., Philips, W., Popescu, D., and Scheunders, P., editors, Advanced Concepts for Intelligent Vision Systems, number 3708 in Lecture Notes in Computer Science, pages 340-347. Springer Berlin Heidelberg.
  23. Szpak, Z. L. and Tapamo, J. R. (2011). Maritime surveillance: Tracking ships inside a dynamic background using a fast level-set. Expert Systems with Applications, 38(6):6669-6680.
  24. Vandecasteele, A., Devillers, R., and Napoli, A. (2013). A semi-supervised learning framework based on spatiotemporal semantic events for maritime anomaly detection and behavior analysis. In Proceedings CoastGIS 2013 Conf.: Monitoring and Adapting to Change on the Coast.
  25. Voles, P. (1999). Target identification in a complex maritime scene. volume 1999, pages 15-15. IEE.
  26. Wijnhoven, R., van Rens, K., Jaspers, E., and de With, P. (2010). Online learning for ship detection in maritime surveillance. pages 73-80.
  27. Yasri, I., Hamid, N., and Yap, V. (2008). Performance analysis of FPGA based sobel edge detection operator. In Int. Conf. on Electronic Design, 2008. ICED 2008, pages 1-4.
  28. Zemmari, R., Daun, M., Feldmann, M., and Nickel, U. (2013). Maritime surveillance with GSM passive radar: Detection and tracking of small agile targets. In Radar Symposium (IRS), 2013 14th Int., volume 1, pages 245-251.
  29. Zhu, X. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the 20th Int. Conf. on Machine learning (ICML-2003), volume 20, page 912.
  30. Zivkovic, Z. (2004). Improved adaptive gaussian mixture model for background subtraction. In Proceedings of the 17th Int. Conf. on Pat. Rec., 2004. ICPR 2004, volume 2, pages 28-31 Vol.2.
Download


Paper Citation


in Harvard Style

Protopapadakis E., Makantasis K. and Doulamis N. (2015). Maritime Targets Detection from Ground Cameras Exploiting Semi-supervised Machine Learning . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: MMS-ER3D, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 583-594. DOI: 10.5220/0005456205830594


in Bibtex Style

@conference{mms-er3d15,
author={Eftychios Protopapadakis and Konstantinos Makantasis and Nikolaos Doulamis},
title={Maritime Targets Detection from Ground Cameras Exploiting Semi-supervised Machine Learning},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: MMS-ER3D, (VISIGRAPP 2015)},
year={2015},
pages={583-594},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005456205830594},
isbn={978-989-758-090-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: MMS-ER3D, (VISIGRAPP 2015)
TI - Maritime Targets Detection from Ground Cameras Exploiting Semi-supervised Machine Learning
SN - 978-989-758-090-1
AU - Protopapadakis E.
AU - Makantasis K.
AU - Doulamis N.
PY - 2015
SP - 583
EP - 594
DO - 10.5220/0005456205830594