A Variational Method to Remove the Combination of Poisson and Gaussian Noises

D. N. H. Thanh, S. D. Dvoenko

Abstract

In this paper, we propose a method to remove noise in digital images. Our method is based on the wellknown variational approach. The novelty of proposed method consists in removing of mixed Poisson- Gaussian noise. This is the actual problem for many types of real raster images, for example, biomedical images. Our method is developed with the goal to combine two famous models: ROF for removing Gaussian noise and modified ROF for removing Poisson noise. As a result, our proposed method can be also applied to remove Gaussian or Poisson noise separately. We develop procedure to perform noise removal with automatically evaluated parameters to get the best result of denoising.

References

  1. Abe C., Shimamura T., 2012, 'Iterative Edge-Preserving adaptive Wiener filter for image denoising', ICCEE, vol. 4, no. 4, pp. 503-506.
  2. Burger M., 2008, Level set and PDE based reconstruction methods in imaging, Springer.
  3. Caselles V., Chambolle A., Novaga M., 2011, Handbook of mathematical methods in imaging, Springer.
  4. Chan T. F., Shen J., 2005, Image processing and analysis: Variational, PDE, Wavelet, and stochastic methods, SIAM.
  5. Chambolle A., 2009, 'An introduction to total variation for image analysis', Theoretical foundations and numerical methods for sparse recovery, vol. 9, pp. 263-340.
  6. Chen K., 2013, 'Introduction to variational image processing models and application', International journal of computer mathematics, vol. 90, no. 1, pp. 1-8.
  7. Getreuer P., 2012, 'Rudin-Osher-Fatemi total variation denoising using split Bregman'. IPOL 2012, 'http://www.ipol.im/pub/art/2012/g-tvd/78.
  8. Gill P. E., Murray W., 1974, Numerical methods for constrained optimization, Academic Press Inc.
  9. Immerker J., 1996, 'Fast noise variance estimation', Computer vision and image understanding, vol. 64, no.2, pp. 300-302.
  10. Jezierska A., 2012, 'Poisson-Gaussian noise parameter estimation in fluorescence microscopy imaging', IEEE International Symposium on Biomedical Imaging 9th, pp. 1663-1666.
  11. Jezierska A., 2011, 'An EM approach for PoissonGaussian noise modelling', EUSIPCO 19th, vol. 62, is. 1, pp. 13-30.
  12. Le T., Chartrand R., Asaki T. J., 2007, 'A variational approach to reconstructing images corrupted by Poisson noise', Journal of mathematical imaging and vision, vol. 27, is. 3, pp. 257-263.
  13. Li F., Shen C., Pi L., 2006, 'A new diffusion-based variational model for image denoising and segmentation', Journal mathematical imaging and vision, vol. 26, is. 1-2, pp. 115-125.
  14. Luisier F., Blu T., Unser M., 2011, 'Image denoising in mixed Poisson-Gaussian noise', IEEE transaction on Image processing, vol. 20, no. 3, pp. 696-708.
  15. Lysaker M., Tai X., 2006, 'Iterative image restoration combining total variation minimization and a secondorder functional', International journal of computer vision, vol. 66, pp. 5-18.
  16. Nick V., 2009, Getty images, 'http://well.blogs.nytimes.com/2009/09/16/what-sortof-exercise-can-make-you-smarter/78.
  17. Rankovic N., Tuba M., 2012, 'Improved adaptive median filter for denoising ultrasound images', Advances in computer science, WSEAS ECC'12, pp. 169-174.
  18. Rubinov A., Yang X., 2003, Applied Optimization: Lagrange-type functions in constrained non-convex optimization, Springer.
  19. Rudin L. I., Osher S., Fatemi E., 1992, 'Nonlinear total variation based noise removal algorithms', Physica D. vol. 60, pp. 259-268.
  20. Scherzer O., 2009, Variational methods in Imaging, Springer.
  21. Thomos N., Boulgouris N. V., Strintzis M. G., 2006, 'Optimized Transmission of JPEG2000 streams over Wireless channels', IEEE transactions on image processing, vol. 15, no.1, pp .54-67.
  22. Tran M. P., Peteri R., Bergounioux M., 2012, 'Denoising 3D medical images using a second order variational model and wavelet shrinkage', Image analysis and recognition, vol. 7325, pp. 138-145.
  23. Wang C., Li T., 2012, 'An improved adaptive median filter for Image denoising', ICCEE, vol. 53, no. 2.64, pp. 393-398.
  24. Wang Z., 2004, 'Image quality assessment: From error visibility to structural similarity', IEEE transaction on Image processing, vol. 13, no. 4, pp. 600-612.
  25. Wang Z., Bovik A. C., 2006, Modern image quality assessment, Morgan & Claypool Publisher.
  26. Xu J., Feng X., Hao Y., 2014, 'A coupled variational model for image denoising using a duality strategy and split Bregman', Multidimensional systems and signal processing, vol. 25, pp. 83-94.
  27. Zhu Y., 2012, 'Noise reduction with low dose CT data based on a modified ROF model', Optics express, vol. 20, no. 16, pp. 17987-18004.
  28. Zeidler E., 1985, Nonlinear functional analysis and its applications: Variational methods and optimization, Springer.
Download


Paper Citation


in Harvard Style

Thanh D. and Dvoenko S. (2015). A Variational Method to Remove the Combination of Poisson and Gaussian Noises . In Proceedings of the 5th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-5, (VISIGRAPP 2015) ISBN 978-989-758-094-9, pages 38-45. DOI: 10.5220/0005460900380045


in Bibtex Style

@conference{imta-515,
author={D. N. H. Thanh and S. D. Dvoenko},
title={A Variational Method to Remove the Combination of Poisson and Gaussian Noises},
booktitle={Proceedings of the 5th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-5, (VISIGRAPP 2015)},
year={2015},
pages={38-45},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005460900380045},
isbn={978-989-758-094-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-5, (VISIGRAPP 2015)
TI - A Variational Method to Remove the Combination of Poisson and Gaussian Noises
SN - 978-989-758-094-9
AU - Thanh D.
AU - Dvoenko S.
PY - 2015
SP - 38
EP - 45
DO - 10.5220/0005460900380045