Blood Flow Prediction and Visualization within the Aneurysm of the Middle Cerebral Artery after Surgical Treatment

Artem Yatchenko, Andrey Gavrilov, Elena Boldyreva, Ivan Arkhipov, Elena Grigorieva, Ivan Godkov, Vladimir Krylov

Abstract

All cerebral aneurysms have the potential to rupture and cause bleeding within the brain. To understand the tactics of treatment of patients with intracranial aneurysms, it is necessary to study in detail the pressure and flow within the aneurysm and vessels. Numerical modelling is a powerful tool for blood flow study, prediction and visualisation. In this paper the method that uses patient-oriented physiological model to determine the numerical modelling parameters is proposed. The experiments were carried out on the real geometry of the patient with two aneurisms of the middle cerebral artery and showed that the proposed methods improves the quality of the surgical planning.

References

  1. Brown, D., Wang, J., Ho, H., Tullis, S. (2013) 'Numeric Simulation of Fluid-Structure Interaction in the Aortic Arch', Comp. Biomechanics for Medicine, pp. 13-23.
  2. Cebral, J.R., Castro, M.A., Soto, O., Löhner R, Alperin N. (2003) 'Blood-flow models of the circle of Willis from magnetic resonance data', J. of Engineering Mathematics, vol. 47(3-4), pp. 369-386.
  3. Chupakhin, A.P., Cherevko, A.A. (2012) 'Measurement and Analysis of Local Cerebral Hemodynamics in Patients with Vascular Malformations of the Brain', Circulation Pathology and Cardiac Surgery, vol. 4. pp. 27-31. (in Russian).
  4. Kamiya, A., Togawa, T. (1972) 'Optimal branching structure of the vascular tree', Bull. Math. Biophys, vol. 34, pp. 431-508.
  5. Kim, H.J., Vignon-Clementel, I.E., Figueroa, C.A., Jansen, K.E., Taylor, C.A. (2010) 'Developing computational methods for three-dimensional finite element simulations of coronary blood flow', Finite Elements in Analysis and Design, vol. 46, pp. 514-525.
  6. Krylov, V.V., Gavrilov, A.V., Prirodov, A.B., Grigoryeva, E.V., Ganin, G.V., Arkhipov, I.V., Yatchenko, A.M. (2013a) 'Modeling of hemodynamic changes in the arteries and arterial brain aneurysm in vascular spasm', Neurosurgery, vol. 4, pp. 16-25.
  7. Krylov, V., Godkov, I. (2011a) 'Hemodynamic Factors of Formation, Growth and Rupture of Brain Aneurysms', J. of Neurology, vol. 1. pp. 4-9. (in Russian).
  8. Krylov, V.V., Godkov, I.M. (2011b) 'Brain Aneurysm Surgery', Moscow, New Time. pp. 23-35. (in Russian).
  9. Krylov, V., Lemenev, V., Murashko, A., Luk'yanchikov, V., Dalibaldyan V. (2013b) 'The Treatment of Patients with Atherosclerotic Damage of Brachiocephalic Arteries Combined with Intracranial Aneurysms', J. of Neurosurgery, vol. 2. pp. 80-85. (in Russian).
  10. Lorensen, W. E., Cline H.E. (1987) 'Marching Cubes: A high resolution 3D surface construction algorithm', Computer Graphics, vol. 21(4), pp. 163-169.
  11. Mittal, N., Zhou, Y., Linares, C., Ung, S., Kaimovitz, B., Molloi, S., Kassab G.S. (2005) 'Analysis of blood flow in the entire coronary arterial tree', Am. J. Physiol. Heart Circ. Physiol, vol. 289, pp. H439-H446.
  12. Murray, C.D., (1926a) 'The physiological principle of minimum work. The vascular system and the cost of blood volume', Natl Acad. Sci. USA 12, pp. 207-214.
  13. Murray, C.D., (1926b) 'The physiological principle of minimum work applied to the angle of branching of arteries', J. Gen. Physiol, vol. 9, pp. 835-841.
  14. Oka, S. (1974) 'Biorheology', Tokyo: Syokabo.
  15. Olufsen, M.S., Peskin, C.S., Kim, W.Y., Pedersen, E.M., Nadim, A., Larsen J. (2000) 'Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions', Ann. of Biomed. Eng, vol. 28(11), pp. 1281-1299.
  16. Rosen, R. (1967) 'Optimality Principles in Biology', London: Butterworths.
  17. Sforza, D.M., Putman, Ch. M., Cebral, J.R. (2009) 'Hemodynamics of Cerebral Aneurysms', Annu Rev. Fluid Mech, vol. 4. pp. 91-107.
  18. Tateshima, S., Tanishita, K., Omura, H., Villablanca, J.P., Vinuela, F. (2007) 'Intra-Aneurysmal Hemodynamics during the Growth of an Unruptured Aneurysm: In Vitro Study Using Longitudinal CT Angiogram Database', Am. J. Neuroradiol. vol. 28, pp.622-627.
  19. Watton, P., Ventikos, Y., Holzapfel, G. (2011) 'Modelling Cerebral Aneurysm Evolution', Stud. Mechanobiol Tissue Eng. Biomater, vol. 7, pp. 373-399.
  20. Zamir, M. (1976) 'The role of shear forces in arterial branching', J. Gen. Biol. vol. 67, pp. 213-222.
  21. Zamir, M. (1977) 'Shear forces and blood vessel radii in the cardiovascular system', J. Gen. Physiol. vol. 69, pp. 449-461.
Download


Paper Citation


in Harvard Style

Yatchenko A., Gavrilov A., Boldyreva E., Arkhipov I., Grigorieva E., Godkov I. and Krylov V. (2015). Blood Flow Prediction and Visualization within the Aneurysm of the Middle Cerebral Artery after Surgical Treatment . In Proceedings of the 5th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-5, (VISIGRAPP 2015) ISBN 978-989-758-094-9, pages 108-113. DOI: 10.5220/0005461301080113


in Bibtex Style

@conference{imta-515,
author={Artem Yatchenko and Andrey Gavrilov and Elena Boldyreva and Ivan Arkhipov and Elena Grigorieva and Ivan Godkov and Vladimir Krylov},
title={Blood Flow Prediction and Visualization within the Aneurysm of the Middle Cerebral Artery after Surgical Treatment},
booktitle={Proceedings of the 5th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-5, (VISIGRAPP 2015)},
year={2015},
pages={108-113},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005461301080113},
isbn={978-989-758-094-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-5, (VISIGRAPP 2015)
TI - Blood Flow Prediction and Visualization within the Aneurysm of the Middle Cerebral Artery after Surgical Treatment
SN - 978-989-758-094-9
AU - Yatchenko A.
AU - Gavrilov A.
AU - Boldyreva E.
AU - Arkhipov I.
AU - Grigorieva E.
AU - Godkov I.
AU - Krylov V.
PY - 2015
SP - 108
EP - 113
DO - 10.5220/0005461301080113