Semantically Enriching the Detrending Step of Time Series Analysis

Lucélia de Souza, Maria Salete Marcon Gomes Vaz, Marcos Sfair Sunye

Abstract

In time series analysis, the trend extraction – detrending is considered a relevant step of preprocessing, where occurs the transformation of nonstationary time series in stationary, that is, free of trends. Trends are time series components that need be removed because they can hide other phenomena, causing distortions in further processing. To helping the decision making, by researchers, about how and how often the time series were detrended, the main contribution of this paper is semantically enriching this step, presenting the Detrend Ontology (DO prefix), designed in a modular way, by reuse of ontological resources, which are extended for modeling of statistical methods applied for detrending in the time domain. The ontology was evaluated by experts and ontologists and validated by means of a case study involving real-world photometric time series. It is described its extensibility for methods in time-frequency domain, as well as the association, when applicable, of instances with linked open data from DBpedia semantic knowledge base. As result of this paper, stands out the semantic enrichment of a relevant step of the analysis, contributing to the scientific knowledge generation in several areas that analyze time series.

References

  1. ACM Ontologies. URL:http://acm.rkbexplorer.com/, Aug. 2014.
  2. ACM Taxonomy. URL:http://dl.acm.org/. Nov. 2014.
  3. Alexandrov, T. et al., 2012. A Review of Some Modern Approaches to the Problem of Trend Extraction. Econometric Reviews. Vol. 31, Number 6, pages 593- 624.
  4. Bendat, J. S., and Piersol, A. G., 1986. Random Data: Analysis and Measurement Procedures, 2nd ed. John Wiley and Sons, Inc., New York, USA.
  5. Berners-Lee, T., Hendler, J., and Lassila, O., 2001. The semantic web. Scientific American 284, 5. 34-43.
  6. Boufleur, R. C., 2012. A busca de exoplanetas com as curvas de luz do corot. Dissertação de mestrado, Curso de Pós-Graduação em Astronomia, R.J., Brasil.
  7. Bozic, B., 2011. Simulation and modeling of semantically enriched time series. 19th International Congress on Modelling and Simulation, 12-16.
  8. Bozic, B., and Winiwarter, W., 2012. Community building based on semantic time series. iiWAS, 213-222.
  9. Bozic, B., and Winiwarter, W., 2013. A showcase of semantic time series processing. IJWIS 9, 2 117-141.
  10. Bozic, B., Peters-Andersa, J., and Schimaka, G., 2014. Ontology mapping in semantic time series processing and climate change prediction. International Environmental Modelling and Software Society (iEMSs).
  11. Chandler, R., and Scott, M., 2011. Statistical Methods for Trend Detection and Analysis in the Environmental Sciences, 1nd ed. Wiley.
  12. Chatfield, C., 2004. The Analysis of Time Series: An Introduction, 6th ed. CRC Press, Florida, US.
  13. Compton, M. et al, 2012. The ssn ontology of the w3c semantic sensor network incubator group. Web Semantics: Science, Services and Agents on the WWW 17, 0.
  14. CSO Ontology. Core Software Ontology. URL:http://cos.ontoware.org/cso, July 2014.
  15. CSnCS Ontology. URL:http://watson.kmi.open.ac.uk/ontologies/LT4eL/CSnCSv0.01Lex.owl, June 2014.
  16. DBpedia. URL: http://dbpedia.org/, Jan 2015.
  17. DCMI Type Vocabulary. URL:http://dublincore.org/ documents/2000/07/11/dcmi-type-vocabulary/, Oct. 2014.
  18. de Souza, L., VAZ, M. S. M. G., SUNYE, M. S., 2014a. Modular development of ontologies for provenance in detrending time series. In: Eleventh Int. Conf. on Inf. Tech: New Generations (ITNG). Las Vegas, p. 567- 572.
  19. de Souza, L., VAZ, M. S. M. G., SUNYE, M. S., 2014b. Domain Ontology for Time Series Provenance. In: 16th International Conference on Enterprise Information Systems. ICEIS. Lisbon, p. 217-224.
  20. de Souza, L., 2014c. Um modelo de proveniência para extração de tendências em séries temporais. Tese de Doutorado. Or. Sunye, M. S. e Vaz, M. S. M. G. Programa de Pós-Graduação em Informática. UFPR, Brazil. 256 pp.
  21. Dul Ontology. URL:http://www.loa-cnr.it/ontologies/ DUL.owl, Feb. 2014.
  22. EvoOnt Ontology. URL:https://files.ifi.uzh.ch/ddis/ oldweb/ddis/research/evoont/, June 2014.
  23. Flandrin, P., Gonçalves, P., and Rilling, G., 2004. Detrending and denoising with empirical mode decompositions. In EUSIPCO-04 (2004), pp. 1581- 1584.
  24. Guarino, N., 1998. Formal ontology and information systems. In Proceedings of FOIS'98, Trento, Italy, 6- 8. Amsterdam, N. Guarino, Ed., IOS Press, pp. 3-15.
  25. Hair, J. F. Jr., Black, W.C., Babin, B.J., Anderson, R. E., 2010. Multivariate Data Analysis. 7th edition. Pearson Prentice Hall.
  26. Henson, C. A., H. Neuhaus, H., Sheth, A. P., Thirunarayan, K., and Buyya, R., 2009. An ontological representation of time series observations on the semantic sensor web. Proc, of 1st Intern. Workshop on the Semantic Sensor Web. Herkalion, Greece.
  27. Huang, N. E., and et al., 1998. The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A 454, 1971.
  28. ISI. International Statistical Institute. URL:http:// isi.cbs.nl/glossary/bloken00.htm, Sept. 2014.
  29. ISO Norms (3534-1:2006, 3534-2:2006 e 3534-3:1999). URL:http://www.iso.org/iso/home/, Oct. 2014.
  30. Lando, P., Lapujade, A., Kassel, G., and Furst, F., 2009. An ontological investigation in the field of computer programs. In Software and Data Tech., Communications in Computer and Inf. Science. 22, 371-383.
  31. Llaves, A., and Renschler, C. S., 2012. Observing changes in real-time sensor observations. In Multidisciplinary Research on Geographical Information in Europe and Beyond.
  32. Meinl, T., 2011. A Novel Wavelet Based Approach for Time Series Data Analysis. PhD thesis, Karlsruhe.
  33. Mislis, D., Schmitt, J. H. M. M., Carone, L., Guenther, E. W. and Patzold, M., 2010. An algorithm for correcting corot raw light curves. arXiv/1008.0300.
  34. Norma brasileira abnt nbr iso 3534-1. 1a. ed. 2006 - 2010. URL:http://www.abntcatalogo.com.br/, Oct. 2014.
  35. Noy, N. F., and McGuinness, D. L., 2001. Ontology development 101: A guide to creating your first ontology. Development 32, 1 (2001), 1-25.
  36. OECD Glossary. URL:http://stats.oecd.org/glossary/ index.htm, Aug. 2014.
  37. ReprMathStatistics Ontology. URL:http://sweet.jpl. nasa.gov.gov/2.3/reprMathStatistics.owl, Sept. 2014.
  38. Sciflow a scientific workflow ontology. URL:http://www.lbd.dcc.ufmg.br/colecoes/sbbd/2011/ 0016.pdf, Oct. 2014.
  39. Seon Ontologies. URL:http://www.se-on.org/, July 2014.
  40. Sheth, A., Henson, C., and Sahoo, S. S., 2008. Semantic sensor web. IEEE Internet Computing 12, 4. 78-83.
  41. Shumway, R.H., and Stoffer, D. S. 2006. Time series analysis and its applications: with R examples. 2nd ed. Springer.
  42. Spiegel, M. R., 1985. Estatística. McGraw-Hill, São Paulo, Brazil.
  43. Statistical Analysis Ontology. URL: URL:http://a.com/ StatisticalAnalysis.owl. Dec, 2015.
  44. Tutorial/, Sept. 2014.
  45. STATS. Statistics glossary. URL:http://www.stats.gla. ac.uk/steps/glossary/paired_data.html, Oct. 2014.
  46. SuarézFigueroa, M. C., Gomez-Perez, A., Motta, E., and Gangemi, 2012. A. Ontology Engineering in a Networked World. Springer-Verlag Berlin Heidelberg.
  47. SWEET Ontology. URL: http://sweet.jpl.nasa.gov/2.3/ sweetAll.owl, Dec, 2015.
  48. SWO Ontology. The Software Ontology. URL:http://purl.bioontology.org/ontology/SWO, June 2014.
  49. SWRC Ontology. Semantic Web for Research Communities Ontology. URL:http://ontoware.org/ swrc/, Jan, 2015.
  50. Terminology on statistical metadata. URL:http:// www.unece.org/fileadmin/DAM/stats/publications/53metadaterminology.pdf, July 2014.
  51. Vautard, R. P. Y., and Ghil, M., 1989. Singular spectrum analysis in nonlinear dynamics with applications to paleoclimatic time series. Physica D 35, 395-424.
  52. Wu, Z., and Huang, N. E., 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis 1, 1, 1- 41.
  53. Wu, Z., Huang, N. E., Long, S. R., and Peng, C., 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Nat. Academy of Sciences 104, 38, 14889-14894.
Download


Paper Citation


in Harvard Style

de Souza L., Marcon Gomes Vaz M. and Sunye M. (2015). Semantically Enriching the Detrending Step of Time Series Analysis . In Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-758-097-0, pages 475-481. DOI: 10.5220/0005467504750481


in Bibtex Style

@conference{iceis15,
author={Lucélia de Souza and Maria Salete Marcon Gomes Vaz and Marcos Sfair Sunye},
title={Semantically Enriching the Detrending Step of Time Series Analysis},
booktitle={Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2015},
pages={475-481},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005467504750481},
isbn={978-989-758-097-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - Semantically Enriching the Detrending Step of Time Series Analysis
SN - 978-989-758-097-0
AU - de Souza L.
AU - Marcon Gomes Vaz M.
AU - Sunye M.
PY - 2015
SP - 475
EP - 481
DO - 10.5220/0005467504750481