Compressed Domain ECG Biometric Identification using JPEG2000

Yi-Ting Wu, Hung-Tsai Wu, Wen-Whei Chang


In wireless telecardiology applications, electrocardiogram (ECG) signals are often represented in compressed format for efficient transmission and storage purposes. Incorporation of compressed ECG based biometric enables faster person identification as it by-passes the full decompression. This study presents a new method to combine ECG biometrics with data compression within a common JPEG2000 framework. To this end, ECG signal is considered as an image and the JPEG2000 standard is applied for data compression. Features relating to ECG morphology and heartbeat intervals are computed directly from the compressed ECG. Different classification approaches are used for person identification. Experiments on standard ECG databases demonstrate the validity of the proposed system for biometric identification with high accuracies on both healthy and diseased subjects.


  1. Aboy, M., Crespo, C., McNames, J., Bassale, J., Jenkins, L., and Goldsteins, B. (2002). A biomedical signal processing toolbox. In Biosignal'02. (pp. 49-52).
  2. Adams, M. D. (2002). The JasPer Project Home Page. Retrieved may 22, 2015, from http://www.ece. frodo/jasper/.
  3. Adams, M. D. and Kossentini, F. (2000). JasPer: A software-based JPEG-2000 codec implementation. In International Conference on Image Processing. (pp. 53-56). IEEE.
  4. Agrafioti, F. and Hatzinakos, D. (2009). ECG biometric analysis in cardiac irregularity conditions. Signal, Image, Video Process., 3(4):329-343.
  5. Biel, L., Pettersson, O., Philipson, L., and Wide, P. (2001). ECG analysis: A new approach in human identification. IEEE Trans. Instrum. Meas., 50(3):808-812.
  6. Bilgin, A., Marcellin, M. W., and Altbach, M. I. (2003). Compression of electrocardiogram signals using JPEG2000. IEEE Trans. Consum. Electron., 49(4):833-840.
  7. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, New York.
  8. Chang, C. C. and Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Techn., 2(3):27.
  9. Chiu, C. C., Chuang, C. M., and Hsu, C. Y. (2009). Discrete wavelet transform applied on personal identity verification with ECG signal. Int. J. Wavelets Multi., 7(3):341-355.
  10. Daubechies, I. and Sweldens, W. (1998). Factoring Wavelet Transforms into Lifting Steps. J. Fourier Anal. Appl., 4(3):245-267.
  11. Do, M. N. and Vetterli, M. (2002). Wavelet-based texture retrieval using generalized gaussian density and kullback-leibler distance. IEEE Trans. Image Process., 11(2):146-158.
  12. Israel, S. A., Irvine, J. M., Cheng, A., Wiederhold, M. D., and Wiederhold, B. K. (2005). ECG to identify individuals. Pattern Recognit., 38(1):133-142.
  13. Jalaleddine, S. M., Hutchens, C. G., Strattan, R. D., and Coberly, W. (1990). ECG data compression techniques - a unified approach. IEEE Trans. Biomed. Eng., 37(4):329-343.
  14. Laguna, P., Mark, R. G., Goldberger, A. L., and Moody, G. B. (1997). A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. In Computers in Cardiology 1997. (pp. 673-676). IEEE.
  15. Linear Dimensions Inc. (2015). Biometric ECG security devices. Retrieved may 22, 2015, from http://
  16. Nymi Inc. (2013). Nymi white paper. Retrieved may 22, 2015, from uploads/2013/11/nymiwhitepaper-1.pdf.
  17. Odinaka, I., Lai, P. H., Kaplan, A. D., OSullivan, J. A., Sirevaag, E. J., and Rohrbaugh, J. W. (2012). ECG biometric recognition: A comparative analysis. IEEE Trans. Inform. Forensic Secur., 7(6):1812-1824.
  18. Plataniotis, K. N., Hatzinakos, D., and Lee, J. K. (2006). ECG biometric recognition without fiducial detection. In BSYM'06, Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference. (pp. 1-6). IEEE.
  19. Poree, F., Kervio, G., and Carrault, G. (2014). ECG biometric analysis in different physiological recording conditions. J. Signal, Image and Video Process.
  20. Smith, J. R. and Chang, S. F. (1994). Transform features for texture classification and discrimination in large image databases. In Int. Conf. Image Process. (pp. 407- 411). IEEE.
  21. Sufi, F. and Khalil, I. (2011). Faster person identification using compressed ECG in time critical wireless telecardiology applications. J. Netw. Comput. Appl., 34(1):282-293.
  22. Sun, C. C. and Tai, S. C. (2005). Beat-based ECG compression using gain-shape vector quantization. IEEE Trans. Biomed. Eng., 52(11):1882-1888.
  23. Taubman, D. S. and Marcellin, M. W. (2001). JPEG 2000: Image Compression Fundamentals, Standards, and Practice. Kluwer Academic Publishers, Norwell, MA.
  24. Thaler, M. S. (2012). The Only EKG Book You'll Ever Need. Lippincott Williams & Wilkins, Philadelphia, 7th edition.
  25. Yang, M., Liu, B., Zhao, M., Li, F., Wang, G., and Zhou, F. (2013). Normalizing electrocardiograms of both healthy persons and cardiovascular disease patients for biometric authentication. PloS one, 8(8):e71523.

Paper Citation

in Harvard Style

Wu Y., Wu H. and Chang W. (2015). Compressed Domain ECG Biometric Identification using JPEG2000 . In Proceedings of the 12th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2015) ISBN 978-989-758-118-2, pages 5-13. DOI: 10.5220/0005499500050013

in Bibtex Style

author={Yi-Ting Wu and Hung-Tsai Wu and Wen-Whei Chang},
title={Compressed Domain ECG Biometric Identification using JPEG2000},
booktitle={Proceedings of the 12th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2015)},

in EndNote Style

JO - Proceedings of the 12th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2015)
TI - Compressed Domain ECG Biometric Identification using JPEG2000
SN - 978-989-758-118-2
AU - Wu Y.
AU - Wu H.
AU - Chang W.
PY - 2015
SP - 5
EP - 13
DO - 10.5220/0005499500050013