An Explicit Bound for Stability of Sinc Bases

Antonio Avantaggiati, Paola Loreti, Pierluigi Vellucci

Abstract

It is well known that exponential Riesz bases are stable. The celebrated theorem by Kadec shows that 1/4 is a stability bound for the exponential basis on L2(-p,p). In this paper we prove that a/p (where a is the Lamb- Oseen constant) is a stability bound for the sinc basis on L2(-p,p). The difference between the two values a/p - 1/4, is ˜ 0.15, therefore the stability bound for the sinc basis on L2(-p,p) is greater than Kadec’s stability bound (i.e. 1/4).

References

  1. A. G. García, J. M. (1998). On the distributional fourier duality and its applications. J. Math. Anal. Appl.
  2. Aldroubi, A. and Feichtinger, H. (1998). Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The lp theory. Proc. Amer. Math.
  3. Avdonin, S. (1974). On the question of riesz bases of exponential functions in l2. Vestnik Leningrad. Univ..
  4. Bailey, B. (2010). Sampling and recovery of multidimensional bandlimited functions via frames. J. Math. Anal. Appl.
  5. Baker, A. (1990). Transcendental Number Theory. Cambridge University Press.
  6. Benedetto, J. (1991). Irregular sampling and frames, in: C. Chui (Ed.), Wavelets A Tutorial in Theory and Applications. Academic Press.
  7. Benedetto, J. (1998). Frames, sampling, and seizure prediction. Springer-Verlag.
  8. Butzer, P. L. (1983). A survey of the whittakershannon sampling theorem and some of its extensions. J. Math. Res. Exposit.
  9. Daubechies, I. and DeVore, R. (2003). Approximating a bandlimited function using very coursely quantized data: a family of stable sigma-delta modulators of arbitrary order. Ann. of Math.
  10. Eoff, C. (1995). The discrete nature of the paley-wiener spaces. Proc. Amer. Math. Soc.
  11. Hardy, G. H. (1941). Notes on special systems of orthogonal functions, iv: The orthogonal functions of whittakerys cardinal series. Proc. Cambridge Philos. Soc.
  12. Hayes, B. (2005). Why w? American Scientist.
  13. Higgins, J. (1985). Five short stories about the cardinal series. Bull. Amer. Math. Soc.
  14. Higgins, J. (1994). Sampling theory for paley-wiener spaces in the riesz basis settings. Proc. Roy. Irish Acad. Sect.
  15. Higgins, J. R. (1996). Sampling Theory in Fourier and Signal Analysis: Foundations. Claredon Press, Oxford.
  16. Kadec, M. (1964). The exact value of the paleywiener constant. Sov. Math. Dokl.
  17. Khrushchev, S. V. (1979). Perturbation theorems for exponential bases and the mackenhoupt condition. Dokl. Akad. Nauk.
  18. Levinson, N. (1940). Gap and Density Theorems., volume 26. Amer. Math. Soc. Colloquium Pubblication.
  19. Oseen, C. W. (1912). Uber wirbelbewegung in einer reibenden flussigkeit. Arkiv fr matematik, astronomi och fysik.
  20. Paley, R. and Wiener, N. (1934). Fourier transforms in the complex domain., volume 19. Amer. Math. Soc. Colloquium Publications.
  21. Pavlov, B. (1979a). Basicity of an exponential system and muckenhoupt's condition. Sov. Math. Dokl.
  22. Pavlov, B. (1979b). The basis property of a system of exponentials and the condition of muckenhoupt. Dokl. Akad. Nauk.
  23. R. M. Corless, G. H. G. e. a. (1996). On the lambert w function. Advances in Computational Mathematics.
  24. Savchuk, A. M. and Shkalikov, A. A. (2006). On the eigenvalues of the sturmliouville operator with potentials from sobolev spaces. Math. Notes.
  25. Sedletskii, A. M. (2009). Nonharmonic analysis. J. Math. Sc.
  26. Seip, K. (1995). On the connection between exponential bases and certain related sequences in l2[ p; p]. J. Funct. Anal.
  27. Shannon, C. (1949). Communications in the presence of noise. Proc. IRE.
  28. Stewart, S. M. (2005). A new elementary function for our curricula? Australian Senior Mathematics Journal.
  29. Sun, W. and Zhou, X. (1999). On the stability of multivariate trigonometric systems. J. Math. Anal. Appl.
  30. Ullrich, D. (1980). Divided differences and systems of nonharmonic fourier series. Proc. Amer. Math. Soc.
  31. Unser, M. (2000). Sampling - 50 years after shannon. Proceedings of the IEEE.
  32. Vellucci, P. (2014). A simple pointview for kadec-1/4 theorem in the complex case. Ricerche di Matematica.
  33. Whittaker, J. (1915). On the functions which are represented by the expansion of interpolating theory. Proc. R. Soc. Edinburgh.
  34. Y. Chen, A. J. Goldsmith, Y. C. E. (2014). Channel capacity under sub-nyquist nonuniform sampling. IEEE Transactions on Information Theory.
  35. Young, R. (2001). An introduction to non-harmonic Fourier series. Academic Press, Inc.
  36. Zayed, A. (2000). Advances in Shannon's Sampling Theory. CRC Press.
Download


Paper Citation


in Harvard Style

Avantaggiati A., Loreti P. and Vellucci P. (2015). An Explicit Bound for Stability of Sinc Bases . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 473-480. DOI: 10.5220/0005512704730480


in Bibtex Style

@conference{icinco15,
author={Antonio Avantaggiati and Paola Loreti and Pierluigi Vellucci},
title={An Explicit Bound for Stability of Sinc Bases},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={473-480},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005512704730480},
isbn={978-989-758-122-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - An Explicit Bound for Stability of Sinc Bases
SN - 978-989-758-122-9
AU - Avantaggiati A.
AU - Loreti P.
AU - Vellucci P.
PY - 2015
SP - 473
EP - 480
DO - 10.5220/0005512704730480