Modeling the G-Protein Signaling of the Retina with Fractional Calculus

Antal Martinecz, Mihoko Niitsuma


The first part of a cone’s signal transduction is investigated from an image processing perspective in order to find out what differentiates (human) vision from computer vision. We found that the activity of cone opsins— visual pigments that are activated by the impact of a photon—can be described as an approximation of a fractional integrator of order 0.1–0.2 on frequencies between 1–30 Hz. We explore how this affects the output signal and provide examples of how this can be used for noise reduction and image processing. We also present a simplified model since these processes require excessive computational power for computer vision modeling.


  1. Adamus, G., Arendt, A., Hargrave, P. A., Heyduk, T., and Palczewski, K. (1993). The kinetics of multiphosphorylation of rhodopsin. Archives of biochemistry and biophysics, 304(2):443-7.
  2. Anastasio, T. J. (1994). The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biological cybernetics, 72(1):69-79.
  3. Arshavsky, V. Y. and Burns, M. E. (2012). Photoreceptor signaling: supporting vision across a wide range of light intensities. The Journal of biological chemistry, 287(3):1620-6.
  4. Ascano, M. and Robinson, P. R. (2006). Differential phosphorylation of the rhodopsin cytoplasmic tail mediates the binding of arrestin and its splice variant, p44. Biochemistry, 45:2398-2407.
  5. Bratkova, M., Boulos, S., and Shirley, P. (2009). oRGB: a practical opponent color space for computer graphics. IEEE computer graphics and applications, 29(1):42- 55.
  6. Charef, A., Sun, H., Tsao, Y., and Onaral, B. (1992). Fractal system as represented by singularity function. IEEE Transactions on Automatic Control, 37(9):1465-1470.
  7. Clerc, J., Tremblay, A.-M., Albinet, G., and Mitescu, C. (1984). a.c. response of fractal networks. Journal de Physique Lettres, 45(19):913-924.
  8. Cornwall, M. C. and Fain, G. L. (1994). Bleached pigment activates transduction in isolated rods of the salamander retina. The Journal of physiology, 480 ( Pt 2:261- 79.
  9. Dalir, M. and Bashour, M. (2010). Applications of fractional calculus. Applied Mathematical Sciences, 4(21):1021-1032.
  10. De Palo, G., Facchetti, G., Mazzolini, M., Menini, A., Torre, V., and Altafini, C. (2013). Common dynamical features of sensory adaptation in photoreceptors and olfactory sensory neurons. Scientific reports, 3:1251.
  11. Eeckman, F. (1989). A retina-like model for motion detection. In International Joint Conference on Neural Networks, pages 247-249 vol.2. IEEE.
  12. Fan, J., Woodruff, M. L., Cilluffo, M. C., Crouch, R. K., and Fain, G. L. (2005). Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice. The Journal of physiology, 568(Pt 1):83-95.
  13. Gould, S., Arfvidsson, J., Kaehler, A., Sapp, B., Messner, M., Bradski, G., Baumstarck, P., Chung, S., and Ng, A. Y. (2007). Peripheral-foveal vision for real-time object recognition and tracking in video. In International Joint Conference on Artificial Intelligence, pages 2115-2121. Morgan Kaufmann Publishers Inc.
  14. Gross, O. P. and Burns, M. E. (2010). Control of rhodopsin's active lifetime by arrestin-1 expression in mammalian rods. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(9):3450-7.
  15. Ichinose, T., Fyk-Kolodziej, B., and Cohn, J. (2014). Roles of ON Cone Bipolar Cell Subtypes in Temporal Coding in the Mouse Retina. Journal of Neuroscience, 34(26):8761-8771.
  16. Invergo, B. M., Montanucci, L., Koch, K.-W., Bertranpetit, J., and Dell'orco, D. (2013a). Exploring the ratelimiting steps in visual phototransduction recovery by bottom-up kinetic modeling. Cell communication and signaling : CCS, 11(1):36.
  17. Invergo, B. M., Montanucci, L., Laayouni, H., and Bertranpetit, J. (2013b). A system-level, molecular evolutionary analysis of mammalian phototransduction. BMC evolutionary biology, 13:52.
  18. Korenbrot, J. I. (2012a). Speed, adaptation, and stability of the response to light in cone photoreceptors: the functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels. The Journal of general physiology, 139(1):31-56.
  19. Korenbrot, J. I. (2012b). Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: Facts and models. Progress in retinal and eye research, 31(5):442-466.
  20. Lamb, T. D. and Pugh, E. N. (2004). Dark adaptation and the retinoid cycle of vision. Progress in retinal and eye research, 23(3):307-80.
  21. Means, R. (1992). Neural Network Retinal Model Real Time Implementation.
  22. Mital, P. K., Smith, T. J., Hill, R., and Henderson, J. M. (2011). Clustering of gaze during dynamic scene viewing is predicted by motion. Cognitive Computation, 3(1):5-24.
  23. Podlubny, I. (2002). Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation. Fractional Calculus and Applied Analysis, 5(4):367-386.
  24. Podlubny, I., Petras?, I., and Vinagre, B. (2002). Analogue realizations of fractional-order controllers. Nonlinear dynamics, pages 281-296.
  25. Qu, Z. and Vondriska, T. M. (2009). The effects of cascade length, kinetics and feedback loops on biological signal transduction dynamics in a simplified cascade model. Physical biology, 6(1):016007.
  26. Reiter, E. and Lefkowitz, R. J. (2006). GRKs and betaarrestins: roles in receptor silencing, trafficking and signaling. Trends in endocrinology and metabolism: TEM, 17(4):159-65.
  27. Sierociuk, D., Podlubny, I., and Petras, I. (2013). Experimental Evidence of Variable-Order Behavior of Ladders and Nested Ladders. IEEE Transactions on Control Systems Technology, 21(2):459-466.
  28. Sinha, A., Jones Brunette, A. M., Fay, J. F., Schafer, C. T., and Farrens, D. L. (2014). Rhodopsin TM6 can interact with two separate and distinct sites on arrestin: Evidence for structural plasticity and multiple docking modes in arrestin-rhodopsin binding. Biochemistry, 53:3294-3307.
  29. Sligte, I. G., Scholte, H. S., and Lamme, V. a. F. (2008). Are there multiple visual short-term memory stores? PloS one, 3(2):e1699.
  30. Thorson, J. and Biederman-Thorson, M. (1974). Distributed relaxation processes in sensory adaptation. Science (New York, N.Y.), 183(4121):161-72.
  31. Wassle, H. (2004). Parallel processing in the mammalian retina. Nature reviews. Neuroscience, 5(October):747-757.
  32. Yang, K., Gao, S., Li, C., and Li, Y. (2013). Efficient Color Boundary Detection with Color-Opponent Mechanisms. 2013 IEEE Conference on Computer Vision and Pattern Recognition, pages 2810-2817.
  33. Yau, K. and Hardie, R. (2009). Phototransduction motifs and variations. Cell, 139(2):246-264.
  34. Zhang, L. (1997). Rhodopsin Phosphorylation Sites and Their Role in Arrestin Binding. Journal of Biological Chemistry, 272(23):14762-14768.
  35. Zilany, M. S. a. and Carney, L. H. (2010). Power-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics. The Journal of neuroscience, 30(31):10380-90.

Paper Citation

in Harvard Style

Martinecz A. and Niitsuma M. (2015). Modeling the G-Protein Signaling of the Retina with Fractional Calculus . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 481-488. DOI: 10.5220/0005515304810488

in Bibtex Style

author={Antal Martinecz and Mihoko Niitsuma},
title={Modeling the G-Protein Signaling of the Retina with Fractional Calculus},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},

in EndNote Style

JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Modeling the G-Protein Signaling of the Retina with Fractional Calculus
SN - 978-989-758-122-9
AU - Martinecz A.
AU - Niitsuma M.
PY - 2015
SP - 481
EP - 488
DO - 10.5220/0005515304810488