Computational Correction for Imaging through Single Fresnel Lenses

Artem Nikonorov, Sergey Bibikov, Maksim Petrov, Yuriy Yuzifovich, Vladimir Fursov

Abstract

The lenses of modern single lens reflex (SLR) cameras may contain a dozen or more individual lens elements to correct aberrations. With processing power more readily available, the modern trend in computational photography is to develop techniques for simple lens aberration correction in post-processing. We propose a similar approach to remove aberrations from images captured by a single imaging Fresnel lens. The image is restored using three-stage deblurring of the base color channel, sharpening other and then applying color correction. The first two steps are based on the combination of restoration techniques used for restoring images obtained from simple refraction lenses. Color correction stage is necessary to remove strong color shift caused by chromatic aberrations of simple Fresnel lens. This technique was tested on real images captured by a simple lens, which was made as a three-step approximation of the Fresnel lens. Promising results open up new opportunities in using lightweight Fresnel lenses in miniature computer vision devices.

References

  1. Chambolle, A., & Pock, T., 2011. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, vol. 40, no. 1, pp. 120-145.
  2. Cho, T. S., Joshi, N., Zitnick, C. L., Sing Bing Kang, Szeliski, R., & Freeman, W.T., 2010. A content-aware image prior IEEE Conference on Computer Vision and Pattern Recognition, pp. 169-176.
  3. Cho, T. S., Zitnick, C. L., Joshi, N., Sing Bing Kang, Szeliski, R., & Freeman, W.T., 2012. Image restoration by matching gradient distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp. 683-694.
  4. Chung, S.-W., Kim, B.-K., & Song, W.-J., 2010. Removing chromatic aberration by digital image processing. Optical Engineering, vol. 49, no. 6, 067002.
  5. Davis, A., & Kuhnlenz, F., 2007. Optical design using Fresnel lenses - basic principles and some practical examples. Optik & Photonik, vol. 2, no. 4, pp. 52-55.
  6. Fang, Y. C., Liu, T. K., MacDonald, J., Chou, J. H., Wu, B. W., Tsai, H. L., & Chang, E. H., 2006. Optimizing chromatic aberration calibration using a novel genetic algorithm. Modern Optics, v. 53, no. 10, pp. 1411-1427.
  7. Farrar, N. R., Smith, A. H., Busath, D. R., & Taitano, D., 2000. In situ measurement of lens aberration. Proc. SPIE, vol. 4000, March, pp. 18-29.
  8. Gonzalez, R. C., & Woods, R. E., 2001. Digital Image Processing, Second Edition, Prentice Hall, 2001.
  9. Heide, F., Rouf, M., Hullin, M. B., Labitzke, B., Heidrich, W., & Kolb, A., 2013. High-quality computational Imaging Through Simple Lenses. ACM Transactions on Graphics, vol. 32, no. 5, article No. 149.
  10. Kang, S. B., 2007. Automatic removal of chromatic aberration from a single image. Computer Vision and Pattern Recognition, 2007, pp. 1-8.
  11. Limare, N., Petro, A. B., Sbert, C., & Morel, J. M., 2011. Retinex Poisson equation: a model for color perception. Image Processing On Line.
  12. Maxwell, B. A., Friedhoff, R. M., & Smith, C. A., 2008. A bi-illuminant dichromatic reflection model for understanding images. Computer Vision and Pattern Recognition, IEEE Conference on, pp. 1-8.
  13. Meyer-Arendt, J. R., 1995. Introduction to Classical and Modern Optics. Prentice Hall.
  14. Millan, M. S., Oton, J., & Perez-Cabre, E., 2006. Chromatic compensation of programmable Fresnel lenses. Opics Express, vol. 14, no. 13, pp. 6226-6242.
  15. Nikonorov, A., Bibikov, S., & Fursov V., 2010. Desktop supercomputing technology for shadow correction of color images. Proceedings of the 2010 International Conference on Signal Processing and Multimedia Applications (SIGMAP), pp. 124-140.
  16. Nikonorov, A., Bibikov, S., Yakimov, P., & Fursov, V., 2014. Spectrum shape elements model to correct color and hyperspectral images. 8th IEEE IAPR Workshop on Pattern Recognition in Remote Sensing, 2014, pp. 1-4.
  17. Powell, I., 1981. Lenses for correcting chromatic aberration of the eye. Applied Optics, v. 20, no. 24, pp. 4152-4155.
  18. Shih, Y., Guenter, B., & Joshi N., 2012. Image enhancement using calibrated lens simulations. Computer Vision - ECCV 2012, pp. 42-56.
  19. Soifer, V. A. (ed.), 2012. Computer Design of Diffractive Optics. Woodhead Publishing.
Download


Paper Citation


in Harvard Style

Nikonorov A., Bibikov S., Petrov M., Yuzifovich Y. and Fursov V. (2015). Computational Correction for Imaging through Single Fresnel Lenses . In Proceedings of the 12th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2015) ISBN 978-989-758-118-2, pages 68-75. DOI: 10.5220/0005543300680075


in Bibtex Style

@conference{sigmap15,
author={Artem Nikonorov and Sergey Bibikov and Maksim Petrov and Yuriy Yuzifovich and Vladimir Fursov},
title={Computational Correction for Imaging through Single Fresnel Lenses},
booktitle={Proceedings of the 12th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2015)},
year={2015},
pages={68-75},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005543300680075},
isbn={978-989-758-118-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2015)
TI - Computational Correction for Imaging through Single Fresnel Lenses
SN - 978-989-758-118-2
AU - Nikonorov A.
AU - Bibikov S.
AU - Petrov M.
AU - Yuzifovich Y.
AU - Fursov V.
PY - 2015
SP - 68
EP - 75
DO - 10.5220/0005543300680075