Unconstrained Global Optimization: A Benchmark Comparison of Population-based Algorithms

Maxim Sidorov, Eugene Semenkin, Wolfgang Minker

Abstract

In this paper we provide a systematic comparison of the following population-based optimization techniques: Genetic Algorithm (GA), Evolution Strategy (ES), Cuckoo Search (CS), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The considered techniques have been implemented and evaluated on a set of 67 multivariate functions. We carefully selected the tested optimization functions which have different features and gave exactly the same number of objective function evaluations for all of the algorithms. This study has revealed that the DE algorithm is preferable in the majority of cases of the tested functions. The results of numerical evaluations and parameter optimization are presented in this paper.

References

  1. Adorio, E. P. and Diliman, U. (2005). Mvf-multivariate test functions library in c for unconstrained global optimization.
  2. Akhmedova, S. and Semenkin, E. (2013). Co-operation of biology related algorithms. In Evolutionary Computation (CEC), 2013 IEEE Congress on, pages 2207- 2214. IEEE.
  3. Back, T. (1996). Evolutionary algorithms in theory and practice. Oxford Univ. Press.
  4. Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution strategies-a comprehensive introduction. Natural computing, 1(1):3-52.
  5. Eberhart, R. C. and Shi, Y. (1998). Comparison between genetic algorithms and particle swarm optimization. In Evolutionary Programming VII, pages 611-616. Springer.
  6. Elbeltagi, E., Hegazy, T., and Grierson, D. (2005). Comparison among five evolutionary-based optimization algorithms. Advanced engineering informatics, 19(1):43-53.
  7. Gray, F. (1953). Pulse code communication. US Patent 2,632,058.
  8. Haupt, R. L. and Haupt, S. E. (2004). Practical genetic algorithms. John Wiley & Sons.
  9. Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press.
  10. Kennedy, J., Eberhart, R., et al. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural networks, volume 4, pages 1942- 1948. Perth, Australia.
  11. Lidberg, S. (2011). Evolving cuckoo search: From singleobjective to multi-objective.
  12. Price, K., Storn, R. M., and Lampinen, J. A. (2006). Differential evolution: a practical approach to global optimization. Springer Science & Business Media.
  13. Semenkin, E. and Semenkina, M. (2012). Self-configuring genetic algorithm with modified uniform crossover operator. In Advances in Swarm Intelligence, pages 414-421. Springer.
  14. Sidorov, M., Brester, K., Minker, W., and Semenkin, E. (2014a). Speech-based emotion recognition: Feature selection by self-adaptive multi-criteria genetic algorithm. In International Conference on Language Resources and Evaluation (LREC).
  15. Sidorov, M., Semenkin, E., and Minker, W. (2014b). Multiagent cooperative algorithms of global optimization. In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), volume 1, pages 259-265.
  16. Storn, R. and Price, K. (1995). Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, volume 3. ICSI Berkeley.
  17. Storn, R. and Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4):341-359.
  18. Yang, X.-S. and Deb, S. (2009). Cuckoo search via lévy flights. In Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, pages 210- 214. IEEE.
  19. Yang, X.-S. and Deb, S. (2010). Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 1(4):330-343.
Download


Paper Citation


in Harvard Style

Sidorov M., Semenkin E. and Minker W. (2015). Unconstrained Global Optimization: A Benchmark Comparison of Population-based Algorithms . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 230-237. DOI: 10.5220/0005548002300237


in Bibtex Style

@conference{icinco15,
author={Maxim Sidorov and Eugene Semenkin and Wolfgang Minker},
title={Unconstrained Global Optimization: A Benchmark Comparison of Population-based Algorithms},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={230-237},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005548002300237},
isbn={978-989-758-122-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Unconstrained Global Optimization: A Benchmark Comparison of Population-based Algorithms
SN - 978-989-758-122-9
AU - Sidorov M.
AU - Semenkin E.
AU - Minker W.
PY - 2015
SP - 230
EP - 237
DO - 10.5220/0005548002300237