Efficient Exploration of Linked Data Cloud

Jakub Klímek, Martin Nečaský, Bogdan Kostov, Miroslav Blaško, Petr Křemen

Abstract

As the size of semantic data available as Linked Open Data (LOD) increases, the demand for methods for automated exploration of data sets grows as well. A data consumer needs to search for data sets meeting his interest and look into them using suitable visualization techniques to check whether the data sets are useful or not. In the recent years, particular advances have been made in the field, e.g., automated ontology matching techniques or LOD visualization platforms. However, an integrated approach to LOD exploration is still missing. On the scale of the whole web, the current approaches allow a user to discover data sets using keywords or manually through large data catalogs. Existing visualization techniques presume that a data set is of an expected type and structure. The aim of this position paper is to show the need for time and space efficient techniques for discovery of previously unknown LOD data sets on the base of a consumer’s interest and their automated visualization which we address in our ongoing work

References

  1. Araujo, S., Shwabe, D., and Barbosa, S. (2009). Experimenting with Explorator: a Direct Manipulation Generic RDF Browser and Querying Tool. In WS on Visual Interfaces to the Social and the Semantic Web.
  2. Atemezing, G. A. and Troncy, R. (2014). Towards a LinkedData based Visualization Wizard. In 5th International Workshop on Consuming Linked Data (COLD 2014), volume 1264 of CEUR Workshop Proceedings. CEUR-WS.org.
  3. Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific American, 284(5):34-43.
  4. Brunetti, J. M., Auer, S., García, R., Klímek, J., and Nec?aský, M. (2013). Formal Linked Data Visualization Model. In Proceedings of the 15th International Conference on Information Integration and Web-based Applications & Services (IIWAS'13), pages 309-318.
  5. Clark, K. and Sirin, E. (2013). On rdf validation, stardog icv, and assorted remarks. In RDF Validation Workshop. Practical Assurances for Quality RDF Data, Cambridge, MA, Boston (September 2013), W3C, http://www. w3. org/2012/12/rdf-val.
  6. Cyganiak, R., Zhao, J., Hausenblas, M., and Alexander, K. (2011). Describing linked datasets with the VoID vocabulary. W3C note, W3C. http://www.w3.org/TR/2011/NOTE-void-20110303/.
  7. Dadzie, A.-S. and Rowe, M. (2011). Approaches to visualising linked data. Semantic Web, 2(2):89-124.
  8. Dadzie, A.-S., Rowe, M., and Petrelli, D. (2011). Hide the Stack: Toward Usable Linked Data. In Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., and Pan, J., editors, The Semantic Web: Research and Applications, volume 6643 of LNCS, pages 93-107. Springer.
  9. de Oliveira, H. R., Tavares, A. T., and Lóscio, B. F. (2012). Feedback-based data set recommendation for building linked data applications. In Proceedings of the 8th International Conference on Semantic Systems, pages 49-55. ACM.
  10. Dumas, B., Broché, T., Hoste, L., and Signer, B. (2012). Vidax: An interactive semantic data visualisation and exploration tool. In Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI 7812, pages 757-760, New York, NY, USA. ACM.
  11. Erickson, J. and Maali, F. (2014). Data catalog vocabulary (DCAT). W3C recommendation, W3C. http://www.w3.org/TR/2014/REC-vocab-dcat20140116/.
  12. Ermilov, I., Martin, M., Lehmann, J., and Auer, S. (2013). Linked open data statistics: Collection and exploitation. In Klinov, P. and Mouromtsev, D., editors, Knowledge Engineering and the Semantic Web, volume 394 of Communications in Computer and Information Science, pages 242-249. Springer.
  13. Hastrup, T., Cyganiak, R., and Bojars, U. (2008). Browsing Linked Data with Fenfire. In Linked Data on the Web (LDOW2008) workshop, in conjunction with WWW 2008 conference.
  14. Heath, T. and Bizer, C. (2011). Linked Data: Evolving the Web into a Global Data Space, volume 1.
  15. Isele, R., Umbrich, J., Bizer, C., and Harth, A. (2010). Ldspider: An open-source crawling framework for the web of linked data. In CEUR Workshop Proceedings, volume 658, pages 29-32.
  16. Jain, P., Hitzler, P., Yeh, P. Z., Verma, K., and Sheth, A. P. (2010). Linked data is merely more data. Linked Data Meets Artificial Intelligence. Technical Report SS-10- 07, AAAI Press, page 82-86.
  17. Klímek, J., Helmich, J., and Nec?aský, M. (2014). Application of the Linked Data Visualization Model on Real World Data from the Czech LOD Cloud. In Bizer, C., Heath, T., Auer, S., and Berners-Lee, T., editors, Proceedings of the Workshop on Linked Data on the Web co-located with the 23rd International World Wide Web Conference (WWW 2014), Korea, volume 1184 of CEUR Workshop Proceedings. CEUR-WS.org.
  18. Kremen, P. and Kostov, B. (2012). Expressive OWL Queries: Design, Evaluation, Visualization. International Journal On Semantic Web and Information Systems.
  19. Leme, L. A. P. P., Lopes, G. R., Nunes, B. P., Casanova, M. A., and Dietze, S. (2013). Identifying candidate datasets for data interlinking. In Web Engineering, pages 354-366. Springer.
  20. Marie, N. and Gandon, F. (2015). Survey of linked data based exploration systems. In IESD 2014-Intelligent Exploitation of Semantic Data.
  21. Motik, B., Parsia, B., and Patel-Schneider, P. F. (2009). OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax. {W3C} recommendation, W3C.
  22. Nikolov, A., d'Aquin, M., and Motta, E. (2012). What should i link to? identifying relevant sources and classes for data linking. In The Semantic Web, pages 284-299. Springer.
  23. Ontotext (2014). GraphDB - An Enterprise Triplestore with Meaning.
  24. Pietriga, E. (2002). IsaViz: a Visual Environment for Browsing and Authoring RDF Models. In WWW 2002, the 11th World Wide Web Conference, Honolulu, Hawaii, USA. World Wide Web Consortium.
  25. Rakhmawati, N. A., Umbrich, J., Karnstedt, M., Hasnain, A., and Hausenblas, M. (2013). Querying over federated sparql endpoints-a state of the art survey. arXiv preprint arXiv:1306.1723.
  26. Schenk, S., Saathoff, C., Staab, S., and Scherp, A. (2009). SemaPlorer-interactive semantic exploration of data and media based on a federated cloud infrastructure. Web Semantics: Science, Services and Agents on the World Wide Web, 7(4):298-304.
  27. Shvaiko, P. and Euzenat, J. (2013). Ontology matching: state of the art and future challenges. Knowledge and Data Engineering, IEEE Transactions on, 25(1):158- 176.
  28. Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. (2007). Pellet: A practical owl-dl reasoner. J. Web Sem., 5(2):51-53.
  29. Thellmann, K., Orlandi, F., and Auer, S. (2014). LinDA - Visualising and Exploring Linked Data. In Proceedings of the Posters and Demos Track of 10th International Conference on Semantic Systems - SEMANTiCS2014, Leipzig, Germany.
Download


Paper Citation


in Harvard Style

Klímek J., Nečaský M., Kostov B., Blaško M. and Křemen P. (2015). Efficient Exploration of Linked Data Cloud . In Proceedings of 4th International Conference on Data Management Technologies and Applications - Volume 1: DATA, ISBN 978-989-758-103-8, pages 255-261. DOI: 10.5220/0005558002550261


in Bibtex Style

@conference{data15,
author={Jakub Klímek and Martin Nečaský and Bogdan Kostov and Miroslav Blaško and Petr Křemen},
title={Efficient Exploration of Linked Data Cloud},
booktitle={Proceedings of 4th International Conference on Data Management Technologies and Applications - Volume 1: DATA,},
year={2015},
pages={255-261},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005558002550261},
isbn={978-989-758-103-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of 4th International Conference on Data Management Technologies and Applications - Volume 1: DATA,
TI - Efficient Exploration of Linked Data Cloud
SN - 978-989-758-103-8
AU - Klímek J.
AU - Nečaský M.
AU - Kostov B.
AU - Blaško M.
AU - Křemen P.
PY - 2015
SP - 255
EP - 261
DO - 10.5220/0005558002550261