Spatio-Temporal Normalization of Data from Heterogeneous Sensors

Alessio Fanelli, Daniela Micucci, Marco Mobilio, Francesco Tisato

Abstract

The growing use of sensors in smart environments applications like smart homes, hospitals, public transportation, emergency services, education, and workplaces not only generates constantly increasing of sensor data, but also rises the complexity of integration of heterogeneous data and hardware devices. In order to get more accurate and consistent information on real world events, heterogeneous sensor data should be normalized. The paper proposes a set of architectural abstractions aimed at representing sensors' measurements that are independent from the sensors' technology. Such a set can reduce the effort for data fusion and interpretation. The abstractions allow to represent raw sensor readings by means of spatio-temporal contextualized events.

References

  1. Cook, D. J., Augusto, J. C., and Jakkula, V. R. (2009). Ambient intelligence: Technologies, applications, and opportunities. Pervasive and Mobile Computing, 5(4):277 - 298.
  2. Dasgupta, R. and Dey, S. (2013). A comprehensive sensor taxonomy and semantic knowledge representation: Energy meter use case. In Sensing Technology (ICST), 2013 Seventh International Conference on, pages 791-799. IEEE.
  3. Fiamberti, F., Micucci, D., Morniroli, A., and Tisato, F. (2012). A model for time-awareness, volume 112 of Lecture Notes in Business Information Processing.
  4. Gurgen, L., Roncancio, C., Labbé, C., Bottaro, A., and Olive, V. (2008). Sstreamware: a service oriented middleware for heterogeneous sensor data management. In Proceedings of the 5th international conference on Pervasive services, pages 121-130. ACM.
  5. Micucci, D., Vertemati, A., Fiamberti, F., Bernini, D., and Tisato, F. (2014). A spaces-based platform enabling responsive environments. International Journal On Advances in Intelligent Systems, 7(1 and 2):179-193.
  6. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G., Olston, C., Rosenstein, J., and Varma, R. (2002). Query processing, resource management, and approximation ina data stream management system. Technical Report 2002-41, Stanford InfoLab.
  7. Tisato, F., Simone, C., Bernini, D., Locatelli, M. P., and Micucci, D. (2012). Grounding ecologies on multiple spaces. Pervasive and Mobile Computing, 8(4):575- 596.
  8. Widyawan, Pirkl, G., Munaretto, D., Fischer, C., An, C., Lukowicz, P., Klepal, M., Timm-Giel, A., Widmer, J., Pesch, D., and Gellersen, H. (2012). Virtual lifeline: Multimodal sensor data fusion for robust navigation in unknown environments. Pervasive and Mobile Computing, 8(3):388-401.
Download


Paper Citation


in Harvard Style

Fanelli A., Micucci D., Mobilio M. and Tisato F. (2015). Spatio-Temporal Normalization of Data from Heterogeneous Sensors . In Proceedings of the 10th International Conference on Software Engineering and Applications - Volume 1: ICSOFT-EA, (ICSOFT 2015) ISBN 978-989-758-114-4, pages 462-467. DOI: 10.5220/0005559504620467


in Bibtex Style

@conference{icsoft-ea15,
author={Alessio Fanelli and Daniela Micucci and Marco Mobilio and Francesco Tisato},
title={Spatio-Temporal Normalization of Data from Heterogeneous Sensors},
booktitle={Proceedings of the 10th International Conference on Software Engineering and Applications - Volume 1: ICSOFT-EA, (ICSOFT 2015)},
year={2015},
pages={462-467},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005559504620467},
isbn={978-989-758-114-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Software Engineering and Applications - Volume 1: ICSOFT-EA, (ICSOFT 2015)
TI - Spatio-Temporal Normalization of Data from Heterogeneous Sensors
SN - 978-989-758-114-4
AU - Fanelli A.
AU - Micucci D.
AU - Mobilio M.
AU - Tisato F.
PY - 2015
SP - 462
EP - 467
DO - 10.5220/0005559504620467