A New Inverse Optimal Control Method for Discrete-time Systems

Moayed Almobaied, Ibrahim Eksin, Mujde Guzelkaya

Abstract

This paper presents a new approach based on extended kalman filter (EKF) to construct a control lyapunov function (CLF). This function will be used in establishing the control law of inverse optimal control for discrete-time nonlinear systems. The main aim of the inverse optimal control is to avoid the solution of the difficult Hamilton-Jacobi-Bellman (HJB) equation which is resulted from the traditional solution of nonlinear optimal control problem. The relevance of the proposed scheme is illustrated through MATLAB simulation. The results show the effectiveness of the proposed method.

References

  1. Freeman, R. A. and Kokotovic, P. V. (1996). Inverse optimality in robust stabilization. SIAM Journal on Control and Optimization, 34(4):1365-1391.
  2. Kalman, R. E. (1964). When is a linear control system optimal? Journal of Fluids Engineering, 86(1):51-60.
  3. Khalil, H. K. (1996). Nonlinear Systems. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition.
  4. LaSalle, J. P. (1986). The Stability and Control of Discrete Processes. Springer-Verlag New York, Inc., New York, NY, USA.
  5. Nakamura, N., Nakamura, H., Yamashita, Y., and Nishitani, H. (2007). Inverse optimal control for nonlinear systems with input constraints. In Control Conference (ECC), 2007 European, pages 5376-5382.
  6. Ornelas, F., Sanchez, E. N., and Loukianov, A. G. (2011). Discrete-time nonlinear systems inverse optimal control: A control lyapunov function approach. In Control Applications (CCA), 2011 IEEE International Conference on, pages 1431-1436.
  7. Ornelas-Tellez, F., Sanchez, E. N., Loukianov, A., and Navarro-Lopez, E. (2011). Speed-gradient inverse optimal control for discrete-time nonlinear systems. In Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on, pages 290-295.
  8. Raol, J., Girija, G., Singh, J., and of Electrical Engineers, I. (2004). Modelling and Parameter Estimation of Dynamic Systems. IEE control engineering series. Institution of Engineering and Technology.
  9. Sanchez, E. N. and Ornelas-Tellez, F. (2013). Discrete-Time Inverse Optimal Control for Nonlinear Systems. CRC Press, Inc., Boca Raton, FL, USA.
  10. Simon, D. (2002). Training fuzzy systems with the extended kalman filter. Fuzzy Sets and Systems, in print, 132:189-199.
  11. Yazid, K., Bouhoune, K., Menaa, M., and Larabi, A. (2011). Application of ekf to parameters estimation for speed sensorless vector control of two-phase induction motor. In Electrical Machines and Power Electronics and 2011 Electromotion Joint Conference (ACEMP), 2011 International Aegean Conference on, pages 357-361.
Download


Paper Citation


in Harvard Style

Almobaied M., Eksin I. and Guzelkaya M. (2015). A New Inverse Optimal Control Method for Discrete-time Systems . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 275-280. DOI: 10.5220/0005562902750280


in Bibtex Style

@conference{icinco15,
author={Moayed Almobaied and Ibrahim Eksin and Mujde Guzelkaya},
title={A New Inverse Optimal Control Method for Discrete-time Systems},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={275-280},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005562902750280},
isbn={978-989-758-122-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A New Inverse Optimal Control Method for Discrete-time Systems
SN - 978-989-758-122-9
AU - Almobaied M.
AU - Eksin I.
AU - Guzelkaya M.
PY - 2015
SP - 275
EP - 280
DO - 10.5220/0005562902750280