Tsunami and Storm Surge Simulation Using Low Power Architectures - Concept and Evaluation

Dominik Schoenwetter, Alexander Ditter, Bruno Kleinert, Arne Hendricks, Vadym Aizinger, Harald Koestler, Dietmar Fey


Performing a tsunami or storm surge simulation in real time is a highly challenging research topic that calls for a collaboration between mathematicians and computer scientists. One must combine mathematical models with numerical methods and rely on computational performance and code parallelization to produce accurate simulation results as fast as possible. The traditional modeling approaches require a lot of computing power and significant amounts of electrical energy; they are also highly dependent on uninterrupted access to a reliable power supply. This paper presents a concept how to develop suitable low power hardware architectures for tsunami and storm surge simulations based on cooperative software and hardware simulation. The main goal is to be able - if necessary - to perform simulations in-situ and battery-powered. For flood warning systems installed in regions with weak or unreliable power and computing infrastructure, this would significantly decrease the risk of failure at the most critical moments.


  1. Accellera Systems Initiative (2015). Official systemc website. http://www.systemc.org. Last visit on 02.02.2015.
  2. Aizinger, V. and Dawson, C. (2002). A discontinuous galerkin method for two-dimensional flow and transport in shallow water. Advances in Water Resources, 25(1):67-84.
  3. Aizinger, V., Proft, J., Dawson, C., Pothina, D., and Negusse, S. (2013). A three-dimensional discontinuous galerkin model applied to the baroclinic simulation of corpus christi bay. Ocean Dynamics, 63(1):89113.
  4. Applegate, D., Bixby, R., Chvátal, V., and Cook, W. (2011). The Traveling Salesman Problem: A Computational Study: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press.
  5. Atitallah, R., Niar, S., Greiner, A., Meftali, S., and Dekeyser, J. (2006). Estimating energy consumption for an mpsoc architectural exploration. In Grass, W., Sick, B., and Waldschmidt, K., editors, Architecture of Computing Systems - ARCS 2006, volume 3894 of Lecture Notes in Computer Science, pages 298-310. Springer Berlin Heidelberg.
  6. Bellard, F. (2005). Qemu, a fast and portable dynamic translator. In USENIX Annual Technical Conference, FREENIX Track, pages 41-46.
  7. Berschneider, S., Herglotz, C., Reichenbach, M., Fey, D., and Kaup, A. (2014). Estimating video decoding energies and processing times utilizing virtual hardware. In Proc. 3PMCES Workshop. Design, Automation & Test in Europe (DATE).
  8. Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness, J., Hower, D. R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M. D., and Wood, D. A. (2011). The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1-7.
  9. Binkert, N. L., Dreslinski, R. G., Hsu, L. R., Lim, K. T., Saidi, A. G., and Reinhardt, S. K. (2006). The m5 simulator: Modeling networked systems. IEEE Micro, 26:52-60.
  10. Carlson, T. E., Heirman, W., and Eeckhout, L. (2011). Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulations. In International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pages 52:1-52:12.
  11. Castro, M., Francesquini, E., Nguélé, T. M., and Méhaut, J.- F. (2013). Analysis of computing and energy performance of multicore, numa, and manycore platforms for an irregular application. In Proceedings of the 3rd Workshop on Irregular Applications: Architectures and Algorithms, IA3 7813, pages 5:1-5:8, New York, NY, USA. ACM.
  12. Dawson, C. and Aizinger, V. (2005). A discontinuous galerkin method for three-dimensional shallow water equations. Journal of Scientific Computing, 22(1- 3):245-267.
  13. Endo, F. A., Couroussé, D., and Charles, H.-P. (2015). Micro-architectural simulation of embedded core heterogeneity with gem5 and mcpat. In Proceedings of the 2015 Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools, RAPIDO 7815, pages 7:1-7:6, New York, NY, USA. ACM.
  14. GEMS Development Team (2015). Official gems website. http://research.cs.wisc.edu/gems/. Last visit on 02.02.2015.
  15. Göddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D., Rajovic, N., Puzovic, N., and Ramirez, A. (2013). Energy efficiency vs. performance of the numerical solution of pdes: An application study on a low-power arm-based cluster. J. Comput. Phys., 237:132-150.
  16. Heirman, W., Sarkar, S., Carlson, T. E., Hur, I., and Eeckhout, L. (2012). Power-aware multi-core simulation for early design stage hardware/software cooptimization. In International Conference on Parallel Architectures and Compilation Techniques (PACT).
  17. Imperas Software Limited (2014). OVP Guide to Using Processor Models. Imperas Buildings, North Weston, Thame, Oxfordshire, OX9 2HA, UK. Version 0.5, docs@imperas.com.
  18. ITMC TU Dortmund (2015). Official lido website. https://www.itmc.uni-dortmund.de/dienste/ hochleistungsrechnen/lido.html. Last visit on 26.03.2015.
  19. KALRAY Corporation (2015). Official kalray mppa processor website. http://www. kalrayinc.com/kalray/products/#processors. Last visit on 31.03.2015.
  20. Kurian, G., Neuman, S., Bezerra, G., Giovinazzo, A., Devadas, S., and Miller, J. (2014). Power modeling and other new features in the graphite simulator. In Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International Symposium on, pages 132- 134.
  21. Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., and Jouppi, N. P. (2013). The mcpat framework for multicore and manycore architectures: Simultaneously modeling power, area, and timing. ACM Trans. Archit. Code Optim., 10(1):5:1-5:29.
  22. Lis, M., Ren, P., Cho, M. H., Shim, K. S., Fletcher, C., Khan, O., and Devadas, S. (2011). Scalable, accurate multicore simulation in the 1000-core era. In Performance Analysis of Systems and Software (ISPASS), 2011 IEEE International Symposium on, pages 175- 185.
  23. Miller, J., Kasture, H., Kurian, G., Gruenwald, C., Beckmann, N., Celio, C., Eastep, J., and Agarwal, A. (2010). Graphite: A distributed parallel simulator for multicores. In High Performance Computer Architecture (HPCA), 2010 IEEE 16th International Symposium on, pages 1-12.
  24. NVIDIA Corporation (2015a). Official nvidia seco development kit website. https://developer.nvidia.com/secodevelopment-kit. Last visit on 31.03.2015.
  25. NVIDIA Corporation (2015b). Official nvidia tegra 2 website. http://www.nvidia.com/object/tegrasuperchip.html. Last visit on 27.03.2015.
  26. NVIDIA Corporation (2015c). Official nvidia tegra 3 website. http://www.nvidia.com/object/tegra-3- processor.html. Last visit on 27.03.2015.
  27. Rajovic, N., Carpenter, P. M., Gelado, I., Puzovic, N., Ramirez, A., and Valero, M. (2013a). Supercomputing with commodity cpus: Are mobile socs ready for hpc? In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC 7813, pages 40:1-40:12, New York, NY, USA. ACM.
  28. Rajovic, N., Rico, A., Vipond, J., Gelado, I., Puzovic, N., and Ramirez, A. (2013b). Experiences with mobile processors for energy efficient hpc. In Proceedings of the Conference on Design, Automation and Test in Europe, DATE 7813, pages 464-468, San Jose, CA, USA. EDA Consortium.
  29. Rosa, F., Ost, L., Raupp, T., Moraes, F., and Reis, R. (2014). Fast energy evaluation of embedded applications for many-core systems. In Power and Timing Modeling, Optimization and Simulation (PATMOS), 2014 24th International Workshop on, pages 1-6.
  30. SocLib Project (2015). Official soclib developer website. http://www.soclib.fr/trac/dev. Last visit on 01.02.2015.
  31. Weaver, V. M. and McKee, S. A. (2008). Are cycle accurate simulations a waste of time? In Proc. 7th Workshop on Duplicating, Deconstructing, and Debunking.

Paper Citation

in Harvard Style

Schoenwetter D., Ditter A., Kleinert B., Hendricks A., Aizinger V., Koestler H. and Fey D. (2015). Tsunami and Storm Surge Simulation Using Low Power Architectures - Concept and Evaluation . In Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-120-5, pages 377-382. DOI: 10.5220/0005566603770382

in Bibtex Style

author={Dominik Schoenwetter and Alexander Ditter and Bruno Kleinert and Arne Hendricks and Vadym Aizinger and Harald Koestler and Dietmar Fey},
title={Tsunami and Storm Surge Simulation Using Low Power Architectures - Concept and Evaluation},
booktitle={Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},

in EndNote Style

JO - Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Tsunami and Storm Surge Simulation Using Low Power Architectures - Concept and Evaluation
SN - 978-989-758-120-5
AU - Schoenwetter D.
AU - Ditter A.
AU - Kleinert B.
AU - Hendricks A.
AU - Aizinger V.
AU - Koestler H.
AU - Fey D.
PY - 2015
SP - 377
EP - 382
DO - 10.5220/0005566603770382