A Note on Schoenmakers Algorithm for Multi Exponentiation

Srinivasa Rao Subramanya Rao

Abstract

In this paper, we provide a triple scalar multiplication analogue of the simultaneous double scalar Schoenmakers’ algorithm for multiexponentiation. We analyse this algorithm to show that on the average, the triple scalar Schoenmakers’ algorithm is more expensive than the straight forward method of computing the individual exponents and then computing the requisite product, thus making it undesirable for use in resource constrained environments. We also show the derivation of the Schoenmakers’ algorithm for simultaneous double scalar multiplication and this is then used to construct the triple scalar multiplication analogue.

References

  1. Akishita, T. (2001). Fast simultaneous scalar multiplication on elliptic curve with montgomery form. In Proceedings of Selected Areas in Cryptography, 2001, LNCS Vol 2259.
  2. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., and Vanstone, S. (2005). Accelerated verification of ecdsa signatures. Technical report, http://www.cacr.math.uwaterloo.ca/techreports/ 2005/tech reports2005.html.
  3. Azarderakhsh, R. and Karabina, K. (2012). A new double point multiplication method and its implementation on binary elliptic curves with endomorphisms. Technical report, http://cacr.uwaterloo.ca/techreports/2012/ cacr2012-24.pdf.
  4. Bellman, R. and Straus, E. (1964). Addition chains of vectors (problem 5125). The American Mathematical Monthly, 71.
  5. Bernstein, D. J. (2006a). Curve25519: New diffie-hellman speed records. In Public Key Cryptography - PKC 2006, LNCS Vol 3958.
  6. Bernstein, D. J. (2006b). addition chains. Technical http://cr.yp.to/ecdh/diffchain-20060219.pdf.
  7. Brier, E. and Joye, M. (2002). Weierstrass elliptic curves and side channel attacks. In Public Key Cryptography - PKC 2002, LNCS Vol 2274.
  8. Brown, D. (2014). Multi-dimensional montgomery ladders for elliptic curves, patent no. us8750500 b2. Technical report, http://www.google.com/patents/US8750500.
  9. Cheon, J. H. and Yi, J. H. (2007). Fast batch verification of multiple signatures. In 10th International Conference on Practice and Theory in Public Key Cryptography 2007, LNCS Vol 4450.
  10. Cohen, H. and Frey, G. (2006). Handbook of Elliptic and HyperElliptic Curve Cryptography. Chapman and Hall/CRC.
  11. Joye, M. and Yen, S. (2002). The montgomery powering ladder. In Proccedings of Cryptographic hardware and embedded systems (CHES) 2002, LNCS Vol 2523.
  12. Knuth, D. (1998). The Art of Computer Programming, Vol2, Third Edition. Pearson.
  13. Lopez, J. and Dahab, R. (1999). Fast multiplication on elliptic curves over gf(2m) without precomputation. In Proceedings of Cryptographic Hardware and Embedded Systems (CHES) 1999, LNCS Vol 1717.
  14. Menezes, A., van Oorschot, P., and Vanstone, S. (1997). Handbook of Applied Cryptography. Taylor and Francis, 1997.
  15. Montgomery, P. L. (1987). Speeding the Pollard and elliptic curve methods of factorization, Mathematics of Computation 48.
  16. Montgomery, P. L. (1992). Evaluating recurrences of form xm+n = f (xm, xn, xm-n) via lucas chains. Technical report, ftp://ftp.cwi.nl/pub/pmontgom/Lucas.ps.gz.
  17. Okeya, K. and Sakurai, K. (2001). Efficient elliptic curve cryptosystems from a scalar multiplication algorithm with recovery of the y-coordinate on a montgomery form elliptic curve. In Proceedings of Cryptographic Hardware and Embedded Systems (CHES) 2001, LNCS Vol 2162.
  18. Rao, S. R. S. (2015). Three dimensional montgomery ladder for elliptic curves, awaiting publication. Technical report, to be published.
  19. Stam, M. (2003). Speeding up subgroup cryptosystems. PhD thesis, Technische Universiteit Eindhoven.
  20. Stinson, D. (2006). Cryptography - Theory and Practice, 3rd Edition. CRC Press.
Download


Paper Citation


in Harvard Style

Rao Subramanya Rao S. (2015). A Note on Schoenmakers Algorithm for Multi Exponentiation . In Proceedings of the 12th International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2015) ISBN 978-989-758-117-5, pages 384-391. DOI: 10.5220/0005566903840391


in Bibtex Style

@conference{secrypt15,
author={Srinivasa Rao Subramanya Rao},
title={A Note on Schoenmakers Algorithm for Multi Exponentiation},
booktitle={Proceedings of the 12th International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2015)},
year={2015},
pages={384-391},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005566903840391},
isbn={978-989-758-117-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2015)
TI - A Note on Schoenmakers Algorithm for Multi Exponentiation
SN - 978-989-758-117-5
AU - Rao Subramanya Rao S.
PY - 2015
SP - 384
EP - 391
DO - 10.5220/0005566903840391