Salient Foreground Object Detection based on Sparse Reconstruction for Artificial Awareness

Jingyu Wang, Ke Zhang, Kurosh Madani, Christophe Sabourin, Jing Zhang

Abstract

Artificial awareness is an interesting way of realizing artificial intelligent perception for machines. Since the foreground object can provide more useful information for perception and informative description of the environment than background regions, the informative saliency characteristics of the foreground object can be treated as a important cue of the objectness property. Thus, a sparse reconstruction error based detection approach is proposed in this paper. To be specific, the overcomplete dictionary is trained by using the image features derived from randomly selected background images, while the reconstruction error is computed in several scales to obtain better detection performance. Experiments on popular image dataset are conducted by applying the proposed approach, while comparison tests by using a state of the art visual saliency detection method are demonstrated as well. The experimental results have shown that the proposed approach is able to detect the foreground object which is distinct for awareness, and has better performance in detecting the information salient foreground object for artificial awareness than the state of the art visual saliency method.

References

  1. Fingelkurts, A. A., Fingelkurts, A. A., & Neves, C. F. (2012). “Machine” consciousness and “artificial” thought: An operational architectonics model guided approach. Brain research, 1428, 80-92.
  2. Ramík, D. M., Madani, K., & Sabourin, C. (2013). From visual patterns to semantic description: A cognitive approach using artificial curiosity as the foundation. Pattern Recognition Letters, 34(14), 1577-1588.
  3. Reggia, J. A. (2013). The rise of machine consciousness: Studying consciousness with computational models. Neural Networks, 44, 112-131.
  4. Wickens, C. D., & Andre, A. D. (1990). Proximity compatibility and information display: Effects of color, space, and objectness on information integration. Human Factors: The Journal of the Human Factors and Ergonomics Society, 32(1), 61-77.
  5. Alexe, B., Deselaers, T., & Ferrari, V. (2010, June). What is an object?. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (pp. 73-80). IEEE.
  6. Alexe, B., Deselaers, T., & Ferrari, V. (2012). Measuring the objectness of image windows. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(11), 2189-2202.
  7. Chang, K. Y., Liu, T. L., Chen, H. T., & Lai, S. H. (2011, November). Fusing generic objectness and visual saliency for salient object detection. In Computer Vision (ICCV), 2011 IEEE International Conference on (pp. 914-921). IEEE.
  8. Spampinato, C., & Palazzo, S. (2012, November). Enhancing object detection performance by integrating motion objectness and perceptual organization. In Pattern Recognition (ICPR), 2012 21st International Conference on (pp. 3640-3643). IEEE.
  9. Cheng, M. M., Zhang, Z., Lin, W. Y., & Torr, P. (2014, June). BING: Binarized normed gradients for objectness estimation at 300fps. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on (pp. 3286-3293). IEEE.
  10. Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1?. Vision research, 37(23), 3311-3325.
  11. Mairal, J., Elad, M., & Sapiro, G. (2008). Sparse representation for color image restoration. Image Processing, IEEE Transactions on, 17(1), 53-69.
  12. Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(2), 210-227.
  13. Ji, Z. J., Wang, W. Q., & Lu, K. (2013). Extract foreground objects based on sparse model of spatiotemporal spectrum. In Image Processing (ICIP), 2013 IEEE International Conference on (pp. 3441- 3445). IEEE.
  14. Sun, S. W., Wang, Y. C. F., Huang, F., & Liao, H. Y. M. (2013). Moving foreground object detection via robust SIFT trajectories. Journal of Visual Communication and Image Representation, 24(3), 232-243.
  15. Biswas, S., & Babu, R. V. (2014, October). Sparse representation based anomaly detection with enhanced local dictionaries. In Image Processing (ICIP), 2014 IEEE International Conference on (pp. 5532-5536). IEEE.
  16. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 195(1), 215-243.
  17. Liu, C., & Wechsler, H. (2002). Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. Image processing, IEEE Transactions on, 11(4), 467-476.
  18. Davis, G., Mallat, S., & Avellaneda, M. (1997). Adaptive greedy approximations. Constructive approximation, 13(1), 57-98.
  19. Donoho, D. L., & Tsaig, Y. (2008). Fast solution of l1- norm minimization problems when the solution may be sparse. Information Theory, IEEE Transactions on, 54(11), 4789-4812.
  20. Rubinstein, R., Zibulevsky, M., & Elad, M. (2010). Double sparsity: Learning sparse dictionaries for sparse signal approximation. Signal Processing, IEEE Transactions on, 58(3), 1553-1564.
  21. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. Signal Processing, IEEE Transactions on, 54(11), 4311-4322.
  22. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 267-288.
  23. Perazzi, F., Krahenbuhl, P., Pritch, Y., & Hornung, A. (2012, June). Saliency filters: Contrast based filtering for salient region detection. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (pp. 733-740). IEEE.
  24. Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2008). The PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results (2007). In URL http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.
Download


Paper Citation


in Harvard Style

Wang J., Zhang K., Madani K., Sabourin C. and Zhang J. (2015). Salient Foreground Object Detection based on Sparse Reconstruction for Artificial Awareness . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-123-6, pages 430-437. DOI: 10.5220/0005571204300437


in Bibtex Style

@conference{icinco15,
author={Jingyu Wang and Ke Zhang and Kurosh Madani and Christophe Sabourin and Jing Zhang},
title={Salient Foreground Object Detection based on Sparse Reconstruction for Artificial Awareness},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2015},
pages={430-437},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005571204300437},
isbn={978-989-758-123-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Salient Foreground Object Detection based on Sparse Reconstruction for Artificial Awareness
SN - 978-989-758-123-6
AU - Wang J.
AU - Zhang K.
AU - Madani K.
AU - Sabourin C.
AU - Zhang J.
PY - 2015
SP - 430
EP - 437
DO - 10.5220/0005571204300437