Range Data Fusion for Accurate Surface Generation from Heterogeneous Range Scanners

Mahesh Kr. Singh, K. S. Venkatesh, Ashish Dutta

Abstract

In this paper, we present a new method for range data fusion from two heterogeneous range scanners for accurate surface modeling of rough and highly unstructured terrain. First, we present the segmentation of RGB-D images using the new framework of the GMM by employing the convex relaxation technique. After segmentation of RGB-D images, we transform both the range data to a common reference frame using PCA algorithm and apply the ICP algorithm to align both data in the reference frame. Based on a threshold criterion, we fuse the range data in such a way that the coarser regions are obtained from Kinect sensor and finer regions of plane are obtained from the Laser range sensor. After fusion, we apply Delaunay triangulation algorithm to generate the highly accurate surface model of the terrain. Finally, the experimental results show the robustness of the proposed approach.

References

  1. An, S.-Y., Lee, L.-K., and Oh, S.-Y. (2012). Fast incremental 3d plane extraction from a collection of 2d line segments for 3d mapping. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 4530-4537. IEEE.
  2. Elseberg, J., Magnenat, S., Siegwart, R., and Nüchter, A. (2012). Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration. Journal of Software Engineering for Robotics, 3(1):2-12.
  3. Herrera, C., Kannala, J., Heikkilä, J., et al. (2012). Joint depth and color camera calibration with distortion correction. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(10):2058-2064.
  4. Johnson, A. E. and Manduchi, R. (2002). Probabilistic 3d data fusion for adaptive resolution surface generation. In 3D Data Processing Visualization and Transmission, International Symposium on, pages 578-578. IEEE Computer Society.
  5. Jolliffe, I. (2005). Principal Component Analysis. Wiley Online Library.
  6. Khoshelham, K. and Elberink, S. O. (2012). Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors, 12(2):1437-1454.
  7. Kläß, J., Stückler, J., and Behnke, S. (2012). Efficient mobile robot navigation using 3d surfel grid maps. In Robotics; Proceedings of ROBOTIK 2012; 7th German Conference on, pages 1-4. VDE.
  8. Lai, K., Bo, L., Ren, X., and Fox, D. (2011). A largescale hierarchical multi-view rgb-d object dataset. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 1817-1824. IEEE.
  9. Li, C., Kao, C.-Y., Gore, J. C., and Ding, Z. (2008). Minimization of region-scalable fitting energy for image segmentation. Image Processing, IEEE Transactions on, 17(10):1940-1949.
  10. Newcombe, R. A., Davison, A. J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., and Fitzgibbon, A. (2011). Kinectfusion: Real-time dense surface mapping and tracking. In Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium on, pages 127-136. IEEE.
  11. Rockafellar, R. T. (1997). Convex analysis. Number 28. Princeton university press.
  12. Singh, M. K., Venkatesh, K., and Dutta, A. (2014). Accurate 3d terrain modeling by range data fusion from two heterogeneous range scanners. In India Conference (INDICON), 2014 Annual IEEE, pages 1-6. IEEE.
  13. Trevor, A. J., Rogers, J., and Christensen, H. I. (2012). Planar surface slam with 3d and 2d sensors. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 3041-3048. IEEE.
  14. Wang, J., Ju, L., and Wang, X. (2009). An edge-weighted centroidal voronoi tessellation model for image segmentation. Image Processing, IEEE Transactions on, 18(8):1844-1858.
  15. Wheeler, M. D., Sato, Y., and Ikeuchi, K. (1998). Consensus surfaces for modeling 3d objects from multiple range images. In Computer Vision, 1998. Sixth International Conference on, pages 917-924. IEEE.
  16. Zhang, Z. (2012). Microsoft kinect sensor and its effect. MultiMedia, IEEE, 19(2):4-10.
Download


Paper Citation


in Harvard Style

Singh M., Venkatesh K. and Dutta A. (2015). Range Data Fusion for Accurate Surface Generation from Heterogeneous Range Scanners . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-123-6, pages 444-449. DOI: 10.5220/0005574504440449


in Bibtex Style

@conference{icinco15,
author={Mahesh Kr. Singh and K. S. Venkatesh and Ashish Dutta},
title={Range Data Fusion for Accurate Surface Generation from Heterogeneous Range Scanners},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2015},
pages={444-449},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005574504440449},
isbn={978-989-758-123-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Range Data Fusion for Accurate Surface Generation from Heterogeneous Range Scanners
SN - 978-989-758-123-6
AU - Singh M.
AU - Venkatesh K.
AU - Dutta A.
PY - 2015
SP - 444
EP - 449
DO - 10.5220/0005574504440449